{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"\n",
"\"COVID-19 Open Research Data Analysis\"\n",
"---\n",
"\n",
"This is an analysis report of the Novel Coronavirus (COVID-19). It is focusing on data processing, visualisation and statstics for R Statistics Course.\n",
"Data provided by Johns Hopkins University [github](https://github.com/CSSEGISandData/COVID-19)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"package 'magrittr' was built under R version 3.6.3\"Warning message:\n",
"\"package 'lubridate' was built under R version 3.6.3\"\n",
"Attaching package: 'lubridate'\n",
"\n",
"The following object is masked from 'package:base':\n",
"\n",
" date\n",
"\n",
"Warning message:\n",
"\"package 'tidyverse' was built under R version 3.6.3\"-- Attaching packages --------------------------------------- tidyverse 1.3.0 --\n",
"v ggplot2 3.3.0 v purrr 0.3.3\n",
"v tibble 2.1.3 v dplyr 0.8.5\n",
"v tidyr 1.0.2 v stringr 1.4.0\n",
"v readr 1.3.1 v forcats 0.5.0\n",
"Warning message:\n",
"\"package 'ggplot2' was built under R version 3.6.3\"Warning message:\n",
"\"package 'tibble' was built under R version 3.6.3\"Warning message:\n",
"\"package 'tidyr' was built under R version 3.6.3\"Warning message:\n",
"\"package 'readr' was built under R version 3.6.3\"Warning message:\n",
"\"package 'purrr' was built under R version 3.6.3\"Warning message:\n",
"\"package 'dplyr' was built under R version 3.6.3\"Warning message:\n",
"\"package 'stringr' was built under R version 3.6.3\"Warning message:\n",
"\"package 'forcats' was built under R version 3.6.3\"-- Conflicts ------------------------------------------ tidyverse_conflicts() --\n",
"x lubridate::as.difftime() masks base::as.difftime()\n",
"x lubridate::date() masks base::date()\n",
"x tidyr::extract() masks magrittr::extract()\n",
"x dplyr::filter() masks stats::filter()\n",
"x lubridate::intersect() masks base::intersect()\n",
"x dplyr::lag() masks stats::lag()\n",
"x purrr::set_names() masks magrittr::set_names()\n",
"x lubridate::setdiff() masks base::setdiff()\n",
"x lubridate::union() masks base::union()\n",
"Warning message:\n",
"\"package 'gridExtra' was built under R version 3.6.3\"\n",
"Attaching package: 'gridExtra'\n",
"\n",
"The following object is masked from 'package:dplyr':\n",
"\n",
" combine\n",
"\n",
"Warning message:\n",
"\"package 'leaflet' was built under R version 3.6.3\"Warning message:\n",
"\"package 'ggforce' was built under R version 3.6.3\"Warning message:\n",
"\"package 'kableExtra' was built under R version 3.6.3\"\n",
"Attaching package: 'kableExtra'\n",
"\n",
"The following object is masked from 'package:dplyr':\n",
"\n",
" group_rows\n",
"\n"
]
},
{
"data": {
"text/html": [
"\n",
"
258 76 \n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 258\n",
"\\item 76\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 258\n",
"2. 76\n",
"\n",
"\n"
],
"text/plain": [
"[1] 258 76"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# This is an analysis report of the Novel Coronavirus (COVID-19)\n",
"# Aim for data processing, visualisation and statstics\n",
"# Source code: http://yanchang.rdatamining.com/\n",
"# set directory\n",
"# Data Source: 2019 Data Repository https://github.com/CSSEGISandData/COVID-19\n",
"# R Packages:\n",
"library(magrittr) # pipline operations\n",
"library(lubridate) # date operation\n",
"library(tidyverse) # data science pips\n",
"library(gridExtra) # grid based plots\n",
"library(dplyr)\n",
"library(leaflet)\n",
"library(ggforce)\n",
"library(kableExtra)\n",
"\n",
"# Loading data\n",
"# At first, three CSV files, are downloaded and saved as local files\n",
"# and then loaded into R\n",
"# source data files changes everytime\n",
"filenames <- c('time_series_covid19_confirmed_global.csv',\n",
" 'time_series_covid19_deaths_global.csv', \n",
" 'time_series_covid19_recovered_global.csv')\n",
"url.path <- paste0('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/',\n",
" 'master/csse_covid_19_data/csse_covid_19_time_series/')\n",
"\n",
"#download files to local folder\n",
"download <- function(filename) {\n",
" url <- file.path(url.path, filename)\n",
" dest <- file.path('./data', filename)\n",
" download.file(url, dest)\n",
"}\n",
"bin <- lapply(filenames, download)\n",
"\n",
"\n",
"# load data into R\n",
"data.confirmed.original <- read.csv('./data/time_series_covid19_confirmed_global.csv')\n",
"data.deaths.original <- read.csv('./data/time_series_covid19_deaths_global.csv')\n",
"data.recovered.original <- read.csv('./data/time_series_covid19_recovered_global.csv')\n",
"\n",
"\n",
"# check dimension of data confirmed\n",
"dim(data.confirmed.original)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 10 × 10 \n",
"\n",
"\tProvince.State Country.Region Lat Long X1.22.20 X1.23.20 X1.24.20 X1.25.20 X1.26.20 X1.27.20 \n",
"\t<fct> <fct> <dbl> <dbl> <int> <int> <int> <int> <int> <int> \n",
" \n",
"\n",
"\t1 Afghanistan 33.0000 65.0000 0 0 0 0 0 0 \n",
"\t2 Albania 41.1533 20.1683 0 0 0 0 0 0 \n",
"\t3 Algeria 28.0339 1.6596 0 0 0 0 0 0 \n",
"\t4 Andorra 42.5063 1.5218 0 0 0 0 0 0 \n",
"\t5 Angola -11.2027 17.8739 0 0 0 0 0 0 \n",
"\t6 Antigua and Barbuda 17.0608 -61.7964 0 0 0 0 0 0 \n",
"\t7 Argentina -38.4161 -63.6167 0 0 0 0 0 0 \n",
"\t8 Armenia 40.0691 45.0382 0 0 0 0 0 0 \n",
"\t9 Australian Capital Territory Australia -35.4735 149.0124 0 0 0 0 0 0 \n",
"\t10 New South Wales Australia -33.8688 151.2093 0 0 0 0 3 4 \n",
" \n",
"
\n"
],
"text/latex": [
"A data.frame: 10 × 10\n",
"\\begin{tabular}{r|llllllllll}\n",
" & Province.State & Country.Region & Lat & Long & X1.22.20 & X1.23.20 & X1.24.20 & X1.25.20 & X1.26.20 & X1.27.20\\\\\n",
" & & & & & & & & & & \\\\\n",
"\\hline\n",
"\t1 & & Afghanistan & 33.0000 & 65.0000 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t2 & & Albania & 41.1533 & 20.1683 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t3 & & Algeria & 28.0339 & 1.6596 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t4 & & Andorra & 42.5063 & 1.5218 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t5 & & Angola & -11.2027 & 17.8739 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t6 & & Antigua and Barbuda & 17.0608 & -61.7964 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t7 & & Argentina & -38.4161 & -63.6167 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t8 & & Armenia & 40.0691 & 45.0382 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t9 & Australian Capital Territory & Australia & -35.4735 & 149.0124 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t10 & New South Wales & Australia & -33.8688 & 151.2093 & 0 & 0 & 0 & 0 & 3 & 4\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 10 × 10\n",
"\n",
"| | Province.State <fct> | Country.Region <fct> | Lat <dbl> | Long <dbl> | X1.22.20 <int> | X1.23.20 <int> | X1.24.20 <int> | X1.25.20 <int> | X1.26.20 <int> | X1.27.20 <int> |\n",
"|---|---|---|---|---|---|---|---|---|---|---|\n",
"| 1 | | Afghanistan | 33.0000 | 65.0000 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 2 | | Albania | 41.1533 | 20.1683 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 3 | | Algeria | 28.0339 | 1.6596 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 4 | | Andorra | 42.5063 | 1.5218 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 5 | | Angola | -11.2027 | 17.8739 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 6 | | Antigua and Barbuda | 17.0608 | -61.7964 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 7 | | Argentina | -38.4161 | -63.6167 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 8 | | Armenia | 40.0691 | 45.0382 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 9 | Australian Capital Territory | Australia | -35.4735 | 149.0124 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| 10 | New South Wales | Australia | -33.8688 | 151.2093 | 0 | 0 | 0 | 0 | 3 | 4 |\n",
"\n"
],
"text/plain": [
" Province.State Country.Region Lat Long X1.22.20\n",
"1 Afghanistan 33.0000 65.0000 0 \n",
"2 Albania 41.1533 20.1683 0 \n",
"3 Algeria 28.0339 1.6596 0 \n",
"4 Andorra 42.5063 1.5218 0 \n",
"5 Angola -11.2027 17.8739 0 \n",
"6 Antigua and Barbuda 17.0608 -61.7964 0 \n",
"7 Argentina -38.4161 -63.6167 0 \n",
"8 Armenia 40.0691 45.0382 0 \n",
"9 Australian Capital Territory Australia -35.4735 149.0124 0 \n",
"10 New South Wales Australia -33.8688 151.2093 0 \n",
" X1.23.20 X1.24.20 X1.25.20 X1.26.20 X1.27.20\n",
"1 0 0 0 0 0 \n",
"2 0 0 0 0 0 \n",
"3 0 0 0 0 0 \n",
"4 0 0 0 0 0 \n",
"5 0 0 0 0 0 \n",
"6 0 0 0 0 0 \n",
"7 0 0 0 0 0 \n",
"8 0 0 0 0 0 \n",
"9 0 0 0 0 0 \n",
"10 0 0 0 3 4 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Table:\n",
"data.confirmed.original[1:10, 1:10]\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"2020-01-22 2020-04-02 \n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 2020-01-22\n",
"\\item 2020-04-02\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 2020-01-22\n",
"2. 2020-04-02\n",
"\n",
"\n"
],
"text/plain": [
"[1] \"2020-01-22\" \"2020-04-02\""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# check time frame of the data\n",
"n.col <- ncol(data.confirmed.original) # 58 variables\n",
"# get dates from column names\n",
"dates <- names(data.confirmed.original)[5:n.col] %>% substr(2,8) %>% mdy()\n",
"range(dates)\n",
"\n",
"min.date <- min(dates)\n",
"max.date <- max(dates)\n",
"max.date.txt <- max.date %>% format('%d %b %Y')\n",
"min.date.txt <- min.date %>% format('%d %b Y')\n",
"# last update on 26 March 2020 max.date"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 10 × 5 \n",
"\n",
"\tcountry date confirmed deaths recovered \n",
"\t<fct> <date> <int> <int> <int> \n",
" \n",
"\n",
"\t63 Spain 2020-03-24 39885 2808 3794 \n",
"\t64 Spain 2020-03-25 49515 3647 5367 \n",
"\t65 Spain 2020-03-26 57786 4365 7015 \n",
"\t66 Spain 2020-03-27 65719 5138 9357 \n",
"\t67 Spain 2020-03-28 73235 5982 12285 \n",
"\t68 Spain 2020-03-29 80110 6803 14709 \n",
"\t69 Spain 2020-03-30 87956 7716 16780 \n",
"\t70 Spain 2020-03-31 95923 8464 19259 \n",
"\t71 Spain 2020-04-01 104118 9387 22647 \n",
"\t72 Spain 2020-04-02 112065 10348 26743 \n",
" \n",
"
\n"
],
"text/latex": [
"A data.frame: 10 × 5\n",
"\\begin{tabular}{r|lllll}\n",
" & country & date & confirmed & deaths & recovered\\\\\n",
" & & & & & \\\\\n",
"\\hline\n",
"\t63 & Spain & 2020-03-24 & 39885 & 2808 & 3794\\\\\n",
"\t64 & Spain & 2020-03-25 & 49515 & 3647 & 5367\\\\\n",
"\t65 & Spain & 2020-03-26 & 57786 & 4365 & 7015\\\\\n",
"\t66 & Spain & 2020-03-27 & 65719 & 5138 & 9357\\\\\n",
"\t67 & Spain & 2020-03-28 & 73235 & 5982 & 12285\\\\\n",
"\t68 & Spain & 2020-03-29 & 80110 & 6803 & 14709\\\\\n",
"\t69 & Spain & 2020-03-30 & 87956 & 7716 & 16780\\\\\n",
"\t70 & Spain & 2020-03-31 & 95923 & 8464 & 19259\\\\\n",
"\t71 & Spain & 2020-04-01 & 104118 & 9387 & 22647\\\\\n",
"\t72 & Spain & 2020-04-02 & 112065 & 10348 & 26743\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 10 × 5\n",
"\n",
"| | country <fct> | date <date> | confirmed <int> | deaths <int> | recovered <int> |\n",
"|---|---|---|---|---|---|\n",
"| 63 | Spain | 2020-03-24 | 39885 | 2808 | 3794 |\n",
"| 64 | Spain | 2020-03-25 | 49515 | 3647 | 5367 |\n",
"| 65 | Spain | 2020-03-26 | 57786 | 4365 | 7015 |\n",
"| 66 | Spain | 2020-03-27 | 65719 | 5138 | 9357 |\n",
"| 67 | Spain | 2020-03-28 | 73235 | 5982 | 12285 |\n",
"| 68 | Spain | 2020-03-29 | 80110 | 6803 | 14709 |\n",
"| 69 | Spain | 2020-03-30 | 87956 | 7716 | 16780 |\n",
"| 70 | Spain | 2020-03-31 | 95923 | 8464 | 19259 |\n",
"| 71 | Spain | 2020-04-01 | 104118 | 9387 | 22647 |\n",
"| 72 | Spain | 2020-04-02 | 112065 | 10348 | 26743 |\n",
"\n"
],
"text/plain": [
" country date confirmed deaths recovered\n",
"63 Spain 2020-03-24 39885 2808 3794 \n",
"64 Spain 2020-03-25 49515 3647 5367 \n",
"65 Spain 2020-03-26 57786 4365 7015 \n",
"66 Spain 2020-03-27 65719 5138 9357 \n",
"67 Spain 2020-03-28 73235 5982 12285 \n",
"68 Spain 2020-03-29 80110 6803 14709 \n",
"69 Spain 2020-03-30 87956 7716 16780 \n",
"70 Spain 2020-03-31 95923 8464 19259 \n",
"71 Spain 2020-04-01 104118 9387 22647 \n",
"72 Spain 2020-04-02 112065 10348 26743 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# Data Preparation steps:\n",
"# 1.From wide to long format\n",
"# 2.Aggregate by country\n",
"# 3. merge into a signe dataset\n",
"# cleaning and transformation\n",
"cleanData <- function(data) {\n",
" ## remove some columns\n",
" data %<>% select(-c(Province.State, Lat, Long)) %>% rename(country=Country.Region) \n",
" ## convert from wide to long format\n",
" data %<>% gather(key=date, value=count, -country) \n",
" ## convert from character to date \n",
" data %<>% mutate(date = date %>% substr(2,8) %>% mdy()) \n",
" ## aggregate by country \n",
" data %<>% group_by(country, date) %>% summarise(count=sum(count)) %>% as.data.frame()\n",
" return(data)\n",
"}\n",
"# clean the three datasets\n",
"data.confirmed <- data.confirmed.original %>% cleanData() %>% rename(confirmed=count) \n",
"data.deaths <- data.deaths.original %>% cleanData() %>% rename(deaths=count)\n",
"data.recovered <- data.recovered.original %>% cleanData() %>% rename(recovered=count)\n",
"\n",
"# merge above 3 datasets into one, by country and date\n",
"data <- data.confirmed %>% merge(data.deaths, all = T) %>% merge(data.recovered, all = T)\n",
"\n",
"# countries/regions with confirmed cases (excl cruise ships)\n",
"countries <- data %>% pull(country) %>% setdiff('Cruise Ship')\n",
"\n",
"# last 10 records when it first broke out in Spain\n",
"data %>% filter(country =='Spain')%>% tail(10)\n",
"\n",
"# counts for worldwide\n",
"data.world <- data %>% group_by(date) %>%\n",
" summarise(country='World',\n",
" confirmed=sum(confirmed, na.rm = T),\n",
" deaths=sum(deaths, na.rm = T),\n",
" recovered=sum(recovered, na.rm = T))\n",
"\n",
"data %<>% rbind(data.world)\n",
"\n",
"# current confirmed cases\n",
"data %<>% mutate(remaining.confirmed = confirmed - deaths - recovered)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 13104 × 9 \n",
"\n",
"\tcountry date confirmed deaths recovered remaining.confirmed confirmed.new deaths.new recovered.new \n",
"\t<fct> <date> <int> <int> <int> <int> <dbl> <dbl> <dbl> \n",
" \n",
"\n",
"\tAfghanistan 2020-01-22 0 0 0 0 NA NA NA \n",
"\tAfghanistan 2020-01-23 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-24 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-25 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-26 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-27 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-28 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-29 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-30 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-01-31 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-01 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-02 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-03 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-04 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-05 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-06 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-07 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-08 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-09 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-10 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-11 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-12 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-13 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-14 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-15 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-16 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-17 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-18 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-19 0 0 0 0 0 0 0 \n",
"\tAfghanistan 2020-02-20 0 0 0 0 0 0 0 \n",
"\t... ... ... ... ... ... ... ... ... \n",
"\tWorld 2020-03-04 95120 3254 51170 40696 2280 94 2942 \n",
"\tWorld 2020-03-05 97886 3348 53796 40742 2766 94 2626 \n",
"\tWorld 2020-03-06 101801 3460 55865 42476 3915 112 2069 \n",
"\tWorld 2020-03-07 105847 3558 58358 43931 4046 98 2493 \n",
"\tWorld 2020-03-08 109821 3802 60694 45325 3974 244 2336 \n",
"\tWorld 2020-03-09 113590 3988 62494 47108 3769 186 1800 \n",
"\tWorld 2020-03-10 118620 4262 64404 49954 5030 274 1910 \n",
"\tWorld 2020-03-11 125875 4615 67003 54257 7255 353 2599 \n",
"\tWorld 2020-03-12 128352 4720 68324 55308 2477 105 1321 \n",
"\tWorld 2020-03-13 145205 5404 70251 69550 16853 684 1927 \n",
"\tWorld 2020-03-14 156101 5819 72624 77658 10896 415 2373 \n",
"\tWorld 2020-03-15 167454 6440 76034 84980 11353 621 3410 \n",
"\tWorld 2020-03-16 181574 7126 78088 96360 14120 686 2054 \n",
"\tWorld 2020-03-17 197102 7905 80840 108357 15528 779 2752 \n",
"\tWorld 2020-03-18 214821 8733 83312 122776 17719 828 2472 \n",
"\tWorld 2020-03-19 242500 9867 84975 147658 27679 1134 1663 \n",
"\tWorld 2020-03-20 272035 11299 87420 173316 29535 1432 2445 \n",
"\tWorld 2020-03-21 304396 12973 91692 199731 32361 1674 4272 \n",
"\tWorld 2020-03-22 336953 14651 97899 224403 32557 1678 6207 \n",
"\tWorld 2020-03-23 378235 16505 98351 263379 41282 1854 452 \n",
"\tWorld 2020-03-24 418045 18625 108000 291420 39810 2120 9649 \n",
"\tWorld 2020-03-25 467653 21181 113787 332685 49608 2556 5787 \n",
"\tWorld 2020-03-26 529591 23970 122150 383471 61938 2789 8363 \n",
"\tWorld 2020-03-27 593291 27198 130915 435178 63700 3228 8765 \n",
"\tWorld 2020-03-28 660706 30652 139415 490639 67415 3454 8500 \n",
"\tWorld 2020-03-29 720117 33925 149082 537110 59411 3273 9667 \n",
"\tWorld 2020-03-30 782365 37582 164566 580217 62248 3657 15484 \n",
"\tWorld 2020-03-31 857487 42107 178034 637346 75122 4525 13468 \n",
"\tWorld 2020-04-01 932605 46809 193177 692619 75118 4702 15143 \n",
"\tWorld 2020-04-02 1013157 52983 210263 749911 80552 6174 17086 \n",
" \n",
"
\n"
],
"text/latex": [
"A data.frame: 13104 × 9\n",
"\\begin{tabular}{lllllllll}\n",
" country & date & confirmed & deaths & recovered & remaining.confirmed & confirmed.new & deaths.new & recovered.new\\\\\n",
" & & & & & & & & \\\\\n",
"\\hline\n",
"\t Afghanistan & 2020-01-22 & 0 & 0 & 0 & 0 & NA & NA & NA\\\\\n",
"\t Afghanistan & 2020-01-23 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-24 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-25 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-26 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-27 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-28 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-29 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-30 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-01-31 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-01 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-02 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-03 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-04 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-05 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-06 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-07 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-08 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-09 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-10 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-11 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-12 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-13 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-14 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-15 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-16 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-17 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-18 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-19 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t Afghanistan & 2020-02-20 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n",
"\t ... & ... & ... & ... & ... & ... & ... & ... & ...\\\\\n",
"\t World & 2020-03-04 & 95120 & 3254 & 51170 & 40696 & 2280 & 94 & 2942\\\\\n",
"\t World & 2020-03-05 & 97886 & 3348 & 53796 & 40742 & 2766 & 94 & 2626\\\\\n",
"\t World & 2020-03-06 & 101801 & 3460 & 55865 & 42476 & 3915 & 112 & 2069\\\\\n",
"\t World & 2020-03-07 & 105847 & 3558 & 58358 & 43931 & 4046 & 98 & 2493\\\\\n",
"\t World & 2020-03-08 & 109821 & 3802 & 60694 & 45325 & 3974 & 244 & 2336\\\\\n",
"\t World & 2020-03-09 & 113590 & 3988 & 62494 & 47108 & 3769 & 186 & 1800\\\\\n",
"\t World & 2020-03-10 & 118620 & 4262 & 64404 & 49954 & 5030 & 274 & 1910\\\\\n",
"\t World & 2020-03-11 & 125875 & 4615 & 67003 & 54257 & 7255 & 353 & 2599\\\\\n",
"\t World & 2020-03-12 & 128352 & 4720 & 68324 & 55308 & 2477 & 105 & 1321\\\\\n",
"\t World & 2020-03-13 & 145205 & 5404 & 70251 & 69550 & 16853 & 684 & 1927\\\\\n",
"\t World & 2020-03-14 & 156101 & 5819 & 72624 & 77658 & 10896 & 415 & 2373\\\\\n",
"\t World & 2020-03-15 & 167454 & 6440 & 76034 & 84980 & 11353 & 621 & 3410\\\\\n",
"\t World & 2020-03-16 & 181574 & 7126 & 78088 & 96360 & 14120 & 686 & 2054\\\\\n",
"\t World & 2020-03-17 & 197102 & 7905 & 80840 & 108357 & 15528 & 779 & 2752\\\\\n",
"\t World & 2020-03-18 & 214821 & 8733 & 83312 & 122776 & 17719 & 828 & 2472\\\\\n",
"\t World & 2020-03-19 & 242500 & 9867 & 84975 & 147658 & 27679 & 1134 & 1663\\\\\n",
"\t World & 2020-03-20 & 272035 & 11299 & 87420 & 173316 & 29535 & 1432 & 2445\\\\\n",
"\t World & 2020-03-21 & 304396 & 12973 & 91692 & 199731 & 32361 & 1674 & 4272\\\\\n",
"\t World & 2020-03-22 & 336953 & 14651 & 97899 & 224403 & 32557 & 1678 & 6207\\\\\n",
"\t World & 2020-03-23 & 378235 & 16505 & 98351 & 263379 & 41282 & 1854 & 452\\\\\n",
"\t World & 2020-03-24 & 418045 & 18625 & 108000 & 291420 & 39810 & 2120 & 9649\\\\\n",
"\t World & 2020-03-25 & 467653 & 21181 & 113787 & 332685 & 49608 & 2556 & 5787\\\\\n",
"\t World & 2020-03-26 & 529591 & 23970 & 122150 & 383471 & 61938 & 2789 & 8363\\\\\n",
"\t World & 2020-03-27 & 593291 & 27198 & 130915 & 435178 & 63700 & 3228 & 8765\\\\\n",
"\t World & 2020-03-28 & 660706 & 30652 & 139415 & 490639 & 67415 & 3454 & 8500\\\\\n",
"\t World & 2020-03-29 & 720117 & 33925 & 149082 & 537110 & 59411 & 3273 & 9667\\\\\n",
"\t World & 2020-03-30 & 782365 & 37582 & 164566 & 580217 & 62248 & 3657 & 15484\\\\\n",
"\t World & 2020-03-31 & 857487 & 42107 & 178034 & 637346 & 75122 & 4525 & 13468\\\\\n",
"\t World & 2020-04-01 & 932605 & 46809 & 193177 & 692619 & 75118 & 4702 & 15143\\\\\n",
"\t World & 2020-04-02 & 1013157 & 52983 & 210263 & 749911 & 80552 & 6174 & 17086\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 13104 × 9\n",
"\n",
"| country <fct> | date <date> | confirmed <int> | deaths <int> | recovered <int> | remaining.confirmed <int> | confirmed.new <dbl> | deaths.new <dbl> | recovered.new <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|\n",
"| Afghanistan | 2020-01-22 | 0 | 0 | 0 | 0 | NA | NA | NA |\n",
"| Afghanistan | 2020-01-23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-01-31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-04 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-06 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-07 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-09 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| Afghanistan | 2020-02-20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n",
"| ... | ... | ... | ... | ... | ... | ... | ... | ... |\n",
"| World | 2020-03-04 | 95120 | 3254 | 51170 | 40696 | 2280 | 94 | 2942 |\n",
"| World | 2020-03-05 | 97886 | 3348 | 53796 | 40742 | 2766 | 94 | 2626 |\n",
"| World | 2020-03-06 | 101801 | 3460 | 55865 | 42476 | 3915 | 112 | 2069 |\n",
"| World | 2020-03-07 | 105847 | 3558 | 58358 | 43931 | 4046 | 98 | 2493 |\n",
"| World | 2020-03-08 | 109821 | 3802 | 60694 | 45325 | 3974 | 244 | 2336 |\n",
"| World | 2020-03-09 | 113590 | 3988 | 62494 | 47108 | 3769 | 186 | 1800 |\n",
"| World | 2020-03-10 | 118620 | 4262 | 64404 | 49954 | 5030 | 274 | 1910 |\n",
"| World | 2020-03-11 | 125875 | 4615 | 67003 | 54257 | 7255 | 353 | 2599 |\n",
"| World | 2020-03-12 | 128352 | 4720 | 68324 | 55308 | 2477 | 105 | 1321 |\n",
"| World | 2020-03-13 | 145205 | 5404 | 70251 | 69550 | 16853 | 684 | 1927 |\n",
"| World | 2020-03-14 | 156101 | 5819 | 72624 | 77658 | 10896 | 415 | 2373 |\n",
"| World | 2020-03-15 | 167454 | 6440 | 76034 | 84980 | 11353 | 621 | 3410 |\n",
"| World | 2020-03-16 | 181574 | 7126 | 78088 | 96360 | 14120 | 686 | 2054 |\n",
"| World | 2020-03-17 | 197102 | 7905 | 80840 | 108357 | 15528 | 779 | 2752 |\n",
"| World | 2020-03-18 | 214821 | 8733 | 83312 | 122776 | 17719 | 828 | 2472 |\n",
"| World | 2020-03-19 | 242500 | 9867 | 84975 | 147658 | 27679 | 1134 | 1663 |\n",
"| World | 2020-03-20 | 272035 | 11299 | 87420 | 173316 | 29535 | 1432 | 2445 |\n",
"| World | 2020-03-21 | 304396 | 12973 | 91692 | 199731 | 32361 | 1674 | 4272 |\n",
"| World | 2020-03-22 | 336953 | 14651 | 97899 | 224403 | 32557 | 1678 | 6207 |\n",
"| World | 2020-03-23 | 378235 | 16505 | 98351 | 263379 | 41282 | 1854 | 452 |\n",
"| World | 2020-03-24 | 418045 | 18625 | 108000 | 291420 | 39810 | 2120 | 9649 |\n",
"| World | 2020-03-25 | 467653 | 21181 | 113787 | 332685 | 49608 | 2556 | 5787 |\n",
"| World | 2020-03-26 | 529591 | 23970 | 122150 | 383471 | 61938 | 2789 | 8363 |\n",
"| World | 2020-03-27 | 593291 | 27198 | 130915 | 435178 | 63700 | 3228 | 8765 |\n",
"| World | 2020-03-28 | 660706 | 30652 | 139415 | 490639 | 67415 | 3454 | 8500 |\n",
"| World | 2020-03-29 | 720117 | 33925 | 149082 | 537110 | 59411 | 3273 | 9667 |\n",
"| World | 2020-03-30 | 782365 | 37582 | 164566 | 580217 | 62248 | 3657 | 15484 |\n",
"| World | 2020-03-31 | 857487 | 42107 | 178034 | 637346 | 75122 | 4525 | 13468 |\n",
"| World | 2020-04-01 | 932605 | 46809 | 193177 | 692619 | 75118 | 4702 | 15143 |\n",
"| World | 2020-04-02 | 1013157 | 52983 | 210263 | 749911 | 80552 | 6174 | 17086 |\n",
"\n"
],
"text/plain": [
" country date confirmed deaths recovered remaining.confirmed\n",
"1 Afghanistan 2020-01-22 0 0 0 0 \n",
"2 Afghanistan 2020-01-23 0 0 0 0 \n",
"3 Afghanistan 2020-01-24 0 0 0 0 \n",
"4 Afghanistan 2020-01-25 0 0 0 0 \n",
"5 Afghanistan 2020-01-26 0 0 0 0 \n",
"6 Afghanistan 2020-01-27 0 0 0 0 \n",
"7 Afghanistan 2020-01-28 0 0 0 0 \n",
"8 Afghanistan 2020-01-29 0 0 0 0 \n",
"9 Afghanistan 2020-01-30 0 0 0 0 \n",
"10 Afghanistan 2020-01-31 0 0 0 0 \n",
"11 Afghanistan 2020-02-01 0 0 0 0 \n",
"12 Afghanistan 2020-02-02 0 0 0 0 \n",
"13 Afghanistan 2020-02-03 0 0 0 0 \n",
"14 Afghanistan 2020-02-04 0 0 0 0 \n",
"15 Afghanistan 2020-02-05 0 0 0 0 \n",
"16 Afghanistan 2020-02-06 0 0 0 0 \n",
"17 Afghanistan 2020-02-07 0 0 0 0 \n",
"18 Afghanistan 2020-02-08 0 0 0 0 \n",
"19 Afghanistan 2020-02-09 0 0 0 0 \n",
"20 Afghanistan 2020-02-10 0 0 0 0 \n",
"21 Afghanistan 2020-02-11 0 0 0 0 \n",
"22 Afghanistan 2020-02-12 0 0 0 0 \n",
"23 Afghanistan 2020-02-13 0 0 0 0 \n",
"24 Afghanistan 2020-02-14 0 0 0 0 \n",
"25 Afghanistan 2020-02-15 0 0 0 0 \n",
"26 Afghanistan 2020-02-16 0 0 0 0 \n",
"27 Afghanistan 2020-02-17 0 0 0 0 \n",
"28 Afghanistan 2020-02-18 0 0 0 0 \n",
"29 Afghanistan 2020-02-19 0 0 0 0 \n",
"30 Afghanistan 2020-02-20 0 0 0 0 \n",
"... ... ... ... ... ... ... \n",
"13075 World 2020-03-04 95120 3254 51170 40696 \n",
"13076 World 2020-03-05 97886 3348 53796 40742 \n",
"13077 World 2020-03-06 101801 3460 55865 42476 \n",
"13078 World 2020-03-07 105847 3558 58358 43931 \n",
"13079 World 2020-03-08 109821 3802 60694 45325 \n",
"13080 World 2020-03-09 113590 3988 62494 47108 \n",
"13081 World 2020-03-10 118620 4262 64404 49954 \n",
"13082 World 2020-03-11 125875 4615 67003 54257 \n",
"13083 World 2020-03-12 128352 4720 68324 55308 \n",
"13084 World 2020-03-13 145205 5404 70251 69550 \n",
"13085 World 2020-03-14 156101 5819 72624 77658 \n",
"13086 World 2020-03-15 167454 6440 76034 84980 \n",
"13087 World 2020-03-16 181574 7126 78088 96360 \n",
"13088 World 2020-03-17 197102 7905 80840 108357 \n",
"13089 World 2020-03-18 214821 8733 83312 122776 \n",
"13090 World 2020-03-19 242500 9867 84975 147658 \n",
"13091 World 2020-03-20 272035 11299 87420 173316 \n",
"13092 World 2020-03-21 304396 12973 91692 199731 \n",
"13093 World 2020-03-22 336953 14651 97899 224403 \n",
"13094 World 2020-03-23 378235 16505 98351 263379 \n",
"13095 World 2020-03-24 418045 18625 108000 291420 \n",
"13096 World 2020-03-25 467653 21181 113787 332685 \n",
"13097 World 2020-03-26 529591 23970 122150 383471 \n",
"13098 World 2020-03-27 593291 27198 130915 435178 \n",
"13099 World 2020-03-28 660706 30652 139415 490639 \n",
"13100 World 2020-03-29 720117 33925 149082 537110 \n",
"13101 World 2020-03-30 782365 37582 164566 580217 \n",
"13102 World 2020-03-31 857487 42107 178034 637346 \n",
"13103 World 2020-04-01 932605 46809 193177 692619 \n",
"13104 World 2020-04-02 1013157 52983 210263 749911 \n",
" confirmed.new deaths.new recovered.new\n",
"1 NA NA NA \n",
"2 0 0 0 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
"5 0 0 0 \n",
"6 0 0 0 \n",
"7 0 0 0 \n",
"8 0 0 0 \n",
"9 0 0 0 \n",
"10 0 0 0 \n",
"11 0 0 0 \n",
"12 0 0 0 \n",
"13 0 0 0 \n",
"14 0 0 0 \n",
"15 0 0 0 \n",
"16 0 0 0 \n",
"17 0 0 0 \n",
"18 0 0 0 \n",
"19 0 0 0 \n",
"20 0 0 0 \n",
"21 0 0 0 \n",
"22 0 0 0 \n",
"23 0 0 0 \n",
"24 0 0 0 \n",
"25 0 0 0 \n",
"26 0 0 0 \n",
"27 0 0 0 \n",
"28 0 0 0 \n",
"29 0 0 0 \n",
"30 0 0 0 \n",
"... ... ... ... \n",
"13075 2280 94 2942 \n",
"13076 2766 94 2626 \n",
"13077 3915 112 2069 \n",
"13078 4046 98 2493 \n",
"13079 3974 244 2336 \n",
"13080 3769 186 1800 \n",
"13081 5030 274 1910 \n",
"13082 7255 353 2599 \n",
"13083 2477 105 1321 \n",
"13084 16853 684 1927 \n",
"13085 10896 415 2373 \n",
"13086 11353 621 3410 \n",
"13087 14120 686 2054 \n",
"13088 15528 779 2752 \n",
"13089 17719 828 2472 \n",
"13090 27679 1134 1663 \n",
"13091 29535 1432 2445 \n",
"13092 32361 1674 4272 \n",
"13093 32557 1678 6207 \n",
"13094 41282 1854 452 \n",
"13095 39810 2120 9649 \n",
"13096 49608 2556 5787 \n",
"13097 61938 2789 8363 \n",
"13098 63700 3228 8765 \n",
"13099 67415 3454 8500 \n",
"13100 59411 3273 9667 \n",
"13101 62248 3657 15484 \n",
"13102 75122 4525 13468 \n",
"13103 75118 4702 15143 \n",
"13104 80552 6174 17086 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# Daily Increases and Death Rates\n",
"\n",
"# rate.upper = total deaths and recovered cases\n",
"# rate.lower = total deaths and confirmed cases\n",
"# expected death rate is to be between above rates\n",
"# rate.daily =daily deaths and recovered cases\n",
"\n",
"## sort by country and date\n",
"data %<>% arrange(country,date)\n",
"# daily increases of deaths and recovered cases\n",
"# set NA to increase on day1\n",
"n <- nrow(data)\n",
"day1 <- min(data$date) # set NA day1\n",
"data %<>% mutate(confirmed.new=ifelse(date ==day1,NA, confirmed - lag(confirmed, n=1)),\n",
" deaths.new=ifelse(date ==day1,NA,deaths - lag(deaths, n=1)),\n",
" recovered.new=ifelse(date ==day1,NA,recovered - lag(recovered, n=1)))\n",
"\n",
"# change negative number of new cases to 0\n",
"data %>% mutate(confirmed.new = ifelse(confirmed.new < 0,0, confirmed.new),\n",
" deaths.new = ifelse(deaths.new < 0, 0, deaths.new),\n",
" recovered.new= ifelse(recovered.new < 0, 0, recovered.new))\n",
"\n",
"# death rate base on total deaths and recovered cases\n",
"data %<>% mutate(rate.upper = (100 *deaths / (deaths + recovered)) %>% round(1))\n",
"# lower bound: death rate based on total confirmed cases\n",
"data %<>% mutate(rate.lower = (100 * deaths / confirmed) %>% round(1))\n",
"# death rate based on number f death/recovered on every single day\n",
"data %<>% mutate(rate.daily = (100 * deaths.new / (deaths.new + recovered.new)) %>% round(1))\n",
" \n",
"# convert from wide to long format, for drawing area plot\n",
"data.long <- data %>%\n",
" select(c(country, date, confirmed, remaining.confirmed, recovered, deaths)) %>%\n",
" gather(key = type, value = count, -c(country,date))\n",
"# set for factor levels to show them in a desirable order\n",
"data.long %<>% mutate(type =recode_factor(type, confirmed= 'Total Confirmed',\n",
" remaining.confirmed = 'Remaining Confirmed',\n",
" recovered= 'Recovered',\n",
" deaths='Deaths'))\n",
"\n",
"# convert from wide to long format, for drawing area plots\n",
"rates.long <- data %>%\n",
" select(c(country, date, rate.upper, rate.lower, rate.daily)) %>% \n",
" gather(key = type, value=count, -c(country,date))\n",
"# set factor levels for desired order\n",
"rates.long %<>% mutate(type =recode_factor(type, rate.daily = 'Daily',\n",
" rate.lower = 'Lower bound',\n",
" rate.upper = 'Upper bound'))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" [1] \"US\" \"Italy\" \"Spain\" \"Germany\" \n",
" [5] \"China\" \"France\" \"Iran\" \"United Kingdom\"\n",
" [9] \"Switzerland\" \"Turkey\" \"Belgium\" \"Netherlands\" \n",
"[13] \"Canada\" \"Austria\" \"Korea, South\" \"Portugal\" \n",
"[17] \"Brazil\" \"Israel\" \"Sweden\" \"Norway\" \n"
]
}
],
"source": [
"# Visualisation\n",
"# After preparing the data, we portrait it in various graphs\n",
"\n",
"# TOP Ten Countries\n",
"# ranking by confirmed cases\n",
"data.latest.all <- data %>% filter(date == max(date)) %>%\n",
" select(country, date,\n",
" confirmed, confirmed.new, remaining.confirmed, recovered, deaths.new, deaths, death.rate = rate.lower) %>% mutate(ranking = dense_rank(desc(confirmed)))\n",
"# top 20 countries incl 11 World\n",
"k<- 20\n",
"top.countries <- data.latest.all %>% filter(ranking <= k+1) %>%\n",
" arrange(ranking) %>% pull(country) %>% as.character()\n",
"top.countries %>% setdiff('World') %>% print()\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"'country' 'date' 'confirmed' 'confirmed.new' 'remaining.confirmed' 'recovered' 'deaths.new' 'deaths' 'death.rate' 'ranking' \n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 'country'\n",
"\\item 'date'\n",
"\\item 'confirmed'\n",
"\\item 'confirmed.new'\n",
"\\item 'remaining.confirmed'\n",
"\\item 'recovered'\n",
"\\item 'deaths.new'\n",
"\\item 'deaths'\n",
"\\item 'death.rate'\n",
"\\item 'ranking'\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 'country'\n",
"2. 'date'\n",
"3. 'confirmed'\n",
"4. 'confirmed.new'\n",
"5. 'remaining.confirmed'\n",
"6. 'recovered'\n",
"7. 'deaths.new'\n",
"8. 'deaths'\n",
"9. 'death.rate'\n",
"10. 'ranking'\n",
"\n",
"\n"
],
"text/plain": [
" [1] \"country\" \"date\" \"confirmed\" \n",
" [4] \"confirmed.new\" \"remaining.confirmed\" \"recovered\" \n",
" [7] \"deaths.new\" \"deaths\" \"death.rate\" \n",
"[10] \"ranking\" "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\\begin{table}[!h]\n",
"\n",
"\\caption{\\label{tab:}Cases in Top 20 Countries - 02 Apr 2020.}\n",
"\\centering\n",
"\\fontsize{7}{9}\\selectfont\n",
"\\begin{tabular}[t]{llrrrrrr}\n",
"\\toprule\n",
" & country & confirmed & deaths & death.rate & confirmed.new & deaths.new & remaining.confirmed\\\\\n",
"\\midrule\n",
"\\rowcolor{gray!6} 1 & World & 1,013,157 & 52,983 & 5.2\\% & 80,552 & 6,174 & 749,911\\\\\n",
"2 & US & 243,453 & 5,926 & 2.4\\% & 30,081 & 1,169 & 228,526\\\\\n",
"\\rowcolor{gray!6} 3 & Italy & 115,242 & 13,915 & 12.1\\% & 4,668 & 760 & 83,049\\\\\n",
"4 & Spain & 112,065 & 10,348 & 9.2\\% & 7,947 & 961 & 74,974\\\\\n",
"\\rowcolor{gray!6} 5 & Germany & 84,794 & 1,107 & 1.3\\% & 6,922 & 187 & 61,247\\\\\n",
"\\addlinespace\n",
"6 & China & 82,432 & 3,322 & 4.0\\% & 71 & 6 & 2,545\\\\\n",
"\\rowcolor{gray!6} 7 & France & 59,929 & 5,398 & 9.0\\% & 2,180 & 1,355 & 41,983\\\\\n",
"8 & Iran & 50,468 & 3,160 & 6.3\\% & 2,875 & 124 & 30,597\\\\\n",
"\\rowcolor{gray!6} 9 & United Kingdom & 34,173 & 2,926 & 8.6\\% & 4,308 & 569 & 31,055\\\\\n",
"10 & Switzerland & 18,827 & 536 & 2.8\\% & 1,059 & 48 & 14,278\\\\\n",
"\\addlinespace\n",
"\\rowcolor{gray!6} 11 & Turkey & 18,135 & 356 & 2.0\\% & 2,456 & 79 & 17,364\\\\\n",
"12 & Belgium & 15,348 & 1,011 & 6.6\\% & 1,384 & 183 & 11,842\\\\\n",
"\\rowcolor{gray!6} 13 & Netherlands & 14,788 & 1,341 & 9.1\\% & 1,092 & 166 & 13,187\\\\\n",
"14 & Canada & 11,284 & 139 & 1.2\\% & 1,724 & 30 & 9,410\\\\\n",
"\\rowcolor{gray!6} 15 & Austria & 11,129 & 158 & 1.4\\% & 418 & 12 & 9,222\\\\\n",
"\\addlinespace\n",
"16 & Korea, South & 9,976 & 169 & 1.7\\% & 89 & 4 & 3,979\\\\\n",
"\\rowcolor{gray!6} 17 & Portugal & 9,034 & 209 & 2.3\\% & 783 & 22 & 8,757\\\\\n",
"18 & Brazil & 8,044 & 324 & 4.0\\% & 1,208 & 84 & 7,593\\\\\n",
"\\rowcolor{gray!6} 19 & Israel & 6,857 & 36 & 0.5\\% & 765 & 10 & 6,483\\\\\n",
"20 & Sweden & 5,568 & 308 & 5.5\\% & 621 & 69 & 5,157\\\\\n",
"\\addlinespace\n",
"\\rowcolor{gray!6} 21 & Norway & 5,147 & 50 & 1.0\\% & 284 & 6 & 5,065\\\\\n",
"22 & Others & 96,464 & 2,244 & 2.3\\% & 9,617 & 330 & 83,598\\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"\\end{table}"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"names(data.latest.all)\n",
"## add 'Others'\n",
"top.countries %<>% c('Others')\n",
"## put all others in a single group of 'Others'\n",
"data.latest <- data.latest.all %>% filter(!is.na(country)) %>%\n",
"mutate(country=ifelse(ranking <= k + 1, as.character(country), 'Others')) %>%\n",
"mutate(country=country %>% factor(levels=c(top.countries)))\n",
"\n",
"data.latest %<>% group_by(country) %>%\n",
" summarise(confirmed=sum(confirmed), confirmed.new=sum(confirmed.new), remaining.confirmed = sum(remaining.confirmed), recovered = sum(recovered),deaths=sum(deaths), deaths.new = sum(deaths.new)) %>%\n",
" mutate(death.rate=(100*deaths/confirmed) %>% round(1))\n",
"data.latest %<>% select(c(country, confirmed, deaths,death.rate, confirmed.new, deaths.new,remaining.confirmed))\n",
"\n",
"data.latest %>% mutate(death.rate=death.rate %>% format(nsmall=1) %>% paste0('%')) %>% kable('latex', booktabs=T, row.names=T, align=c('l', rep('r', 6)), caption=paste0('Cases in Top 20 Countries - ', max.date.txt,'.'), format.args=list(big.mark=',')) %>% kable_styling(font_size=7, latex_options=c('striped', 'hold_position', 'repeat_header'))\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 258 × 6 \n",
"\n",
"\tCountry.Region Province.State Lat Long confirmed txt \n",
"\t<fct> <fct> <dbl> <dbl> <int> <chr> \n",
" \n",
"\n",
"\tAfghanistan 33.0000 65.0000 273 Afghanistan-:273 \n",
"\tAlbania 41.1533 20.1683 277 Albania-:277 \n",
"\tAlgeria 28.0339 1.6596 986 Algeria-:986 \n",
"\tAndorra 42.5063 1.5218 428 Andorra-:428 \n",
"\tAngola -11.2027 17.8739 8 Angola-:8 \n",
"\tAntigua and Barbuda 17.0608 -61.7964 9 Antigua and Barbuda-:9 \n",
"\tArgentina -38.4161 -63.6167 1133 Argentina-:1133 \n",
"\tArmenia 40.0691 45.0382 663 Armenia-:663 \n",
"\tAustralia Australian Capital Territory -35.4735 149.0124 87 Australia-Australian Capital Territory:87 \n",
"\tAustralia New South Wales -33.8688 151.2093 2298 Australia-New South Wales:2298 \n",
"\tAustralia Northern Territory -12.4634 130.8456 21 Australia-Northern Territory:21 \n",
"\tAustralia Queensland -28.0167 153.4000 835 Australia-Queensland:835 \n",
"\tAustralia South Australia -34.9285 138.6007 367 Australia-South Australia:367 \n",
"\tAustralia Tasmania -41.4545 145.9707 72 Australia-Tasmania:72 \n",
"\tAustralia Victoria -37.8136 144.9631 1036 Australia-Victoria:1036 \n",
"\tAustralia Western Australia -31.9505 115.8605 400 Australia-Western Australia:400 \n",
"\tAustria 47.5162 14.5501 11129 Austria-:11129 \n",
"\tAzerbaijan 40.1431 47.5769 400 Azerbaijan-:400 \n",
"\tBahamas 25.0343 -77.3963 24 Bahamas-:24 \n",
"\tBahrain 26.0275 50.5500 643 Bahrain-:643 \n",
"\tBangladesh 23.6850 90.3563 56 Bangladesh-:56 \n",
"\tBarbados 13.1939 -59.5432 46 Barbados-:46 \n",
"\tBelarus 53.7098 27.9534 304 Belarus-:304 \n",
"\tBelgium 50.8333 4.0000 15348 Belgium-:15348 \n",
"\tBenin 9.3077 2.3158 13 Benin-:13 \n",
"\tBhutan 27.5142 90.4336 5 Bhutan-:5 \n",
"\tBolivia -16.2902 -63.5887 123 Bolivia-:123 \n",
"\tBosnia and Herzegovina 43.9159 17.6791 533 Bosnia and Herzegovina-:533 \n",
"\tBrazil -14.2350 -51.9253 8044 Brazil-:8044 \n",
"\tBrunei 4.5353 114.7277 133 Brunei-:133 \n",
"\t... ... ... ... ... ... \n",
"\tVietnam 16.000000 108.000000 233 Vietnam-:233 \n",
"\tZambia -15.416700 28.283300 39 Zambia-:39 \n",
"\tZimbabwe -20.000000 30.000000 9 Zimbabwe-:9 \n",
"\tCanada Diamond Princess 0.000000 0.000000 0 Canada-Diamond Princess:0 \n",
"\tDominica 15.415000 -61.371000 12 Dominica-:12 \n",
"\tGrenada 12.116500 -61.679000 10 Grenada-:10 \n",
"\tMozambique -18.665695 35.529562 10 Mozambique-:10 \n",
"\tSyria 34.802075 38.996815 16 Syria-:16 \n",
"\tTimor-Leste -8.874217 125.727539 1 Timor-Leste-:1 \n",
"\tBelize 13.193900 -59.543200 3 Belize-:3 \n",
"\tCanada Recovered 0.000000 0.000000 0 Canada-Recovered:0 \n",
"\tLaos 19.856270 102.495496 10 Laos-:10 \n",
"\tLibya 26.335100 17.228331 11 Libya-:11 \n",
"\tWest Bank and Gaza 31.952200 35.233200 161 West Bank and Gaza-:161 \n",
"\tGuinea-Bissau 11.803700 -15.180400 9 Guinea-Bissau-:9 \n",
"\tMali 17.570692 -3.996166 36 Mali-:36 \n",
"\tSaint Kitts and Nevis 17.357822 -62.782998 9 Saint Kitts and Nevis-:9 \n",
"\tCanada Northwest Territories 64.825500 -124.845700 2 Canada-Northwest Territories:2 \n",
"\tCanada Yukon 64.282300 -135.000000 6 Canada-Yukon:6 \n",
"\tKosovo 42.602636 20.902977 125 Kosovo-:125 \n",
"\tBurma 21.916200 95.956000 20 Burma-:20 \n",
"\tUnited Kingdom Anguilla 18.220600 -63.068600 3 United Kingdom-Anguilla:3 \n",
"\tUnited Kingdom British Virgin Islands 18.420700 -64.640000 3 United Kingdom-British Virgin Islands:3 \n",
"\tUnited Kingdom Turks and Caicos Islands 21.694000 -71.797900 5 United Kingdom-Turks and Caicos Islands:5 \n",
"\tMS Zaandam 0.000000 0.000000 9 MS Zaandam-:9 \n",
"\tBotswana -22.328500 24.684900 4 Botswana-:4 \n",
"\tBurundi -3.373100 29.918900 3 Burundi-:3 \n",
"\tSierra Leone 8.460555 -11.779889 2 Sierra Leone-:2 \n",
"\tNetherlands Bonaire, Sint Eustatius and Saba 12.178400 -68.238500 2 Netherlands-Bonaire, Sint Eustatius and Saba:2 \n",
"\tMalawi -13.254308 34.301525 3 Malawi-:3 \n",
" \n",
"
\n"
],
"text/latex": [
"A data.frame: 258 × 6\n",
"\\begin{tabular}{llllll}\n",
" Country.Region & Province.State & Lat & Long & confirmed & txt\\\\\n",
" & & & & & \\\\\n",
"\\hline\n",
"\t Afghanistan & & 33.0000 & 65.0000 & 273 & Afghanistan-:273 \\\\\n",
"\t Albania & & 41.1533 & 20.1683 & 277 & Albania-:277 \\\\\n",
"\t Algeria & & 28.0339 & 1.6596 & 986 & Algeria-:986 \\\\\n",
"\t Andorra & & 42.5063 & 1.5218 & 428 & Andorra-:428 \\\\\n",
"\t Angola & & -11.2027 & 17.8739 & 8 & Angola-:8 \\\\\n",
"\t Antigua and Barbuda & & 17.0608 & -61.7964 & 9 & Antigua and Barbuda-:9 \\\\\n",
"\t Argentina & & -38.4161 & -63.6167 & 1133 & Argentina-:1133 \\\\\n",
"\t Armenia & & 40.0691 & 45.0382 & 663 & Armenia-:663 \\\\\n",
"\t Australia & Australian Capital Territory & -35.4735 & 149.0124 & 87 & Australia-Australian Capital Territory:87\\\\\n",
"\t Australia & New South Wales & -33.8688 & 151.2093 & 2298 & Australia-New South Wales:2298 \\\\\n",
"\t Australia & Northern Territory & -12.4634 & 130.8456 & 21 & Australia-Northern Territory:21 \\\\\n",
"\t Australia & Queensland & -28.0167 & 153.4000 & 835 & Australia-Queensland:835 \\\\\n",
"\t Australia & South Australia & -34.9285 & 138.6007 & 367 & Australia-South Australia:367 \\\\\n",
"\t Australia & Tasmania & -41.4545 & 145.9707 & 72 & Australia-Tasmania:72 \\\\\n",
"\t Australia & Victoria & -37.8136 & 144.9631 & 1036 & Australia-Victoria:1036 \\\\\n",
"\t Australia & Western Australia & -31.9505 & 115.8605 & 400 & Australia-Western Australia:400 \\\\\n",
"\t Austria & & 47.5162 & 14.5501 & 11129 & Austria-:11129 \\\\\n",
"\t Azerbaijan & & 40.1431 & 47.5769 & 400 & Azerbaijan-:400 \\\\\n",
"\t Bahamas & & 25.0343 & -77.3963 & 24 & Bahamas-:24 \\\\\n",
"\t Bahrain & & 26.0275 & 50.5500 & 643 & Bahrain-:643 \\\\\n",
"\t Bangladesh & & 23.6850 & 90.3563 & 56 & Bangladesh-:56 \\\\\n",
"\t Barbados & & 13.1939 & -59.5432 & 46 & Barbados-:46 \\\\\n",
"\t Belarus & & 53.7098 & 27.9534 & 304 & Belarus-:304 \\\\\n",
"\t Belgium & & 50.8333 & 4.0000 & 15348 & Belgium-:15348 \\\\\n",
"\t Benin & & 9.3077 & 2.3158 & 13 & Benin-:13 \\\\\n",
"\t Bhutan & & 27.5142 & 90.4336 & 5 & Bhutan-:5 \\\\\n",
"\t Bolivia & & -16.2902 & -63.5887 & 123 & Bolivia-:123 \\\\\n",
"\t Bosnia and Herzegovina & & 43.9159 & 17.6791 & 533 & Bosnia and Herzegovina-:533 \\\\\n",
"\t Brazil & & -14.2350 & -51.9253 & 8044 & Brazil-:8044 \\\\\n",
"\t Brunei & & 4.5353 & 114.7277 & 133 & Brunei-:133 \\\\\n",
"\t ... & ... & ... & ... & ... & ...\\\\\n",
"\t Vietnam & & 16.000000 & 108.000000 & 233 & Vietnam-:233 \\\\\n",
"\t Zambia & & -15.416700 & 28.283300 & 39 & Zambia-:39 \\\\\n",
"\t Zimbabwe & & -20.000000 & 30.000000 & 9 & Zimbabwe-:9 \\\\\n",
"\t Canada & Diamond Princess & 0.000000 & 0.000000 & 0 & Canada-Diamond Princess:0 \\\\\n",
"\t Dominica & & 15.415000 & -61.371000 & 12 & Dominica-:12 \\\\\n",
"\t Grenada & & 12.116500 & -61.679000 & 10 & Grenada-:10 \\\\\n",
"\t Mozambique & & -18.665695 & 35.529562 & 10 & Mozambique-:10 \\\\\n",
"\t Syria & & 34.802075 & 38.996815 & 16 & Syria-:16 \\\\\n",
"\t Timor-Leste & & -8.874217 & 125.727539 & 1 & Timor-Leste-:1 \\\\\n",
"\t Belize & & 13.193900 & -59.543200 & 3 & Belize-:3 \\\\\n",
"\t Canada & Recovered & 0.000000 & 0.000000 & 0 & Canada-Recovered:0 \\\\\n",
"\t Laos & & 19.856270 & 102.495496 & 10 & Laos-:10 \\\\\n",
"\t Libya & & 26.335100 & 17.228331 & 11 & Libya-:11 \\\\\n",
"\t West Bank and Gaza & & 31.952200 & 35.233200 & 161 & West Bank and Gaza-:161 \\\\\n",
"\t Guinea-Bissau & & 11.803700 & -15.180400 & 9 & Guinea-Bissau-:9 \\\\\n",
"\t Mali & & 17.570692 & -3.996166 & 36 & Mali-:36 \\\\\n",
"\t Saint Kitts and Nevis & & 17.357822 & -62.782998 & 9 & Saint Kitts and Nevis-:9 \\\\\n",
"\t Canada & Northwest Territories & 64.825500 & -124.845700 & 2 & Canada-Northwest Territories:2 \\\\\n",
"\t Canada & Yukon & 64.282300 & -135.000000 & 6 & Canada-Yukon:6 \\\\\n",
"\t Kosovo & & 42.602636 & 20.902977 & 125 & Kosovo-:125 \\\\\n",
"\t Burma & & 21.916200 & 95.956000 & 20 & Burma-:20 \\\\\n",
"\t United Kingdom & Anguilla & 18.220600 & -63.068600 & 3 & United Kingdom-Anguilla:3 \\\\\n",
"\t United Kingdom & British Virgin Islands & 18.420700 & -64.640000 & 3 & United Kingdom-British Virgin Islands:3 \\\\\n",
"\t United Kingdom & Turks and Caicos Islands & 21.694000 & -71.797900 & 5 & United Kingdom-Turks and Caicos Islands:5 \\\\\n",
"\t MS Zaandam & & 0.000000 & 0.000000 & 9 & MS Zaandam-:9 \\\\\n",
"\t Botswana & & -22.328500 & 24.684900 & 4 & Botswana-:4 \\\\\n",
"\t Burundi & & -3.373100 & 29.918900 & 3 & Burundi-:3 \\\\\n",
"\t Sierra Leone & & 8.460555 & -11.779889 & 2 & Sierra Leone-:2 \\\\\n",
"\t Netherlands & Bonaire, Sint Eustatius and Saba & 12.178400 & -68.238500 & 2 & Netherlands-Bonaire, Sint Eustatius and Saba:2\\\\\n",
"\t Malawi & & -13.254308 & 34.301525 & 3 & Malawi-:3 \\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 258 × 6\n",
"\n",
"| Country.Region <fct> | Province.State <fct> | Lat <dbl> | Long <dbl> | confirmed <int> | txt <chr> |\n",
"|---|---|---|---|---|---|\n",
"| Afghanistan | | 33.0000 | 65.0000 | 273 | Afghanistan-:273 |\n",
"| Albania | | 41.1533 | 20.1683 | 277 | Albania-:277 |\n",
"| Algeria | | 28.0339 | 1.6596 | 986 | Algeria-:986 |\n",
"| Andorra | | 42.5063 | 1.5218 | 428 | Andorra-:428 |\n",
"| Angola | | -11.2027 | 17.8739 | 8 | Angola-:8 |\n",
"| Antigua and Barbuda | | 17.0608 | -61.7964 | 9 | Antigua and Barbuda-:9 |\n",
"| Argentina | | -38.4161 | -63.6167 | 1133 | Argentina-:1133 |\n",
"| Armenia | | 40.0691 | 45.0382 | 663 | Armenia-:663 |\n",
"| Australia | Australian Capital Territory | -35.4735 | 149.0124 | 87 | Australia-Australian Capital Territory:87 |\n",
"| Australia | New South Wales | -33.8688 | 151.2093 | 2298 | Australia-New South Wales:2298 |\n",
"| Australia | Northern Territory | -12.4634 | 130.8456 | 21 | Australia-Northern Territory:21 |\n",
"| Australia | Queensland | -28.0167 | 153.4000 | 835 | Australia-Queensland:835 |\n",
"| Australia | South Australia | -34.9285 | 138.6007 | 367 | Australia-South Australia:367 |\n",
"| Australia | Tasmania | -41.4545 | 145.9707 | 72 | Australia-Tasmania:72 |\n",
"| Australia | Victoria | -37.8136 | 144.9631 | 1036 | Australia-Victoria:1036 |\n",
"| Australia | Western Australia | -31.9505 | 115.8605 | 400 | Australia-Western Australia:400 |\n",
"| Austria | | 47.5162 | 14.5501 | 11129 | Austria-:11129 |\n",
"| Azerbaijan | | 40.1431 | 47.5769 | 400 | Azerbaijan-:400 |\n",
"| Bahamas | | 25.0343 | -77.3963 | 24 | Bahamas-:24 |\n",
"| Bahrain | | 26.0275 | 50.5500 | 643 | Bahrain-:643 |\n",
"| Bangladesh | | 23.6850 | 90.3563 | 56 | Bangladesh-:56 |\n",
"| Barbados | | 13.1939 | -59.5432 | 46 | Barbados-:46 |\n",
"| Belarus | | 53.7098 | 27.9534 | 304 | Belarus-:304 |\n",
"| Belgium | | 50.8333 | 4.0000 | 15348 | Belgium-:15348 |\n",
"| Benin | | 9.3077 | 2.3158 | 13 | Benin-:13 |\n",
"| Bhutan | | 27.5142 | 90.4336 | 5 | Bhutan-:5 |\n",
"| Bolivia | | -16.2902 | -63.5887 | 123 | Bolivia-:123 |\n",
"| Bosnia and Herzegovina | | 43.9159 | 17.6791 | 533 | Bosnia and Herzegovina-:533 |\n",
"| Brazil | | -14.2350 | -51.9253 | 8044 | Brazil-:8044 |\n",
"| Brunei | | 4.5353 | 114.7277 | 133 | Brunei-:133 |\n",
"| ... | ... | ... | ... | ... | ... |\n",
"| Vietnam | | 16.000000 | 108.000000 | 233 | Vietnam-:233 |\n",
"| Zambia | | -15.416700 | 28.283300 | 39 | Zambia-:39 |\n",
"| Zimbabwe | | -20.000000 | 30.000000 | 9 | Zimbabwe-:9 |\n",
"| Canada | Diamond Princess | 0.000000 | 0.000000 | 0 | Canada-Diamond Princess:0 |\n",
"| Dominica | | 15.415000 | -61.371000 | 12 | Dominica-:12 |\n",
"| Grenada | | 12.116500 | -61.679000 | 10 | Grenada-:10 |\n",
"| Mozambique | | -18.665695 | 35.529562 | 10 | Mozambique-:10 |\n",
"| Syria | | 34.802075 | 38.996815 | 16 | Syria-:16 |\n",
"| Timor-Leste | | -8.874217 | 125.727539 | 1 | Timor-Leste-:1 |\n",
"| Belize | | 13.193900 | -59.543200 | 3 | Belize-:3 |\n",
"| Canada | Recovered | 0.000000 | 0.000000 | 0 | Canada-Recovered:0 |\n",
"| Laos | | 19.856270 | 102.495496 | 10 | Laos-:10 |\n",
"| Libya | | 26.335100 | 17.228331 | 11 | Libya-:11 |\n",
"| West Bank and Gaza | | 31.952200 | 35.233200 | 161 | West Bank and Gaza-:161 |\n",
"| Guinea-Bissau | | 11.803700 | -15.180400 | 9 | Guinea-Bissau-:9 |\n",
"| Mali | | 17.570692 | -3.996166 | 36 | Mali-:36 |\n",
"| Saint Kitts and Nevis | | 17.357822 | -62.782998 | 9 | Saint Kitts and Nevis-:9 |\n",
"| Canada | Northwest Territories | 64.825500 | -124.845700 | 2 | Canada-Northwest Territories:2 |\n",
"| Canada | Yukon | 64.282300 | -135.000000 | 6 | Canada-Yukon:6 |\n",
"| Kosovo | | 42.602636 | 20.902977 | 125 | Kosovo-:125 |\n",
"| Burma | | 21.916200 | 95.956000 | 20 | Burma-:20 |\n",
"| United Kingdom | Anguilla | 18.220600 | -63.068600 | 3 | United Kingdom-Anguilla:3 |\n",
"| United Kingdom | British Virgin Islands | 18.420700 | -64.640000 | 3 | United Kingdom-British Virgin Islands:3 |\n",
"| United Kingdom | Turks and Caicos Islands | 21.694000 | -71.797900 | 5 | United Kingdom-Turks and Caicos Islands:5 |\n",
"| MS Zaandam | | 0.000000 | 0.000000 | 9 | MS Zaandam-:9 |\n",
"| Botswana | | -22.328500 | 24.684900 | 4 | Botswana-:4 |\n",
"| Burundi | | -3.373100 | 29.918900 | 3 | Burundi-:3 |\n",
"| Sierra Leone | | 8.460555 | -11.779889 | 2 | Sierra Leone-:2 |\n",
"| Netherlands | Bonaire, Sint Eustatius and Saba | 12.178400 | -68.238500 | 2 | Netherlands-Bonaire, Sint Eustatius and Saba:2 |\n",
"| Malawi | | -13.254308 | 34.301525 | 3 | Malawi-:3 |\n",
"\n"
],
"text/plain": [
" Country.Region Province.State Lat \n",
"1 Afghanistan 33.0000 \n",
"2 Albania 41.1533 \n",
"3 Algeria 28.0339 \n",
"4 Andorra 42.5063 \n",
"5 Angola -11.2027 \n",
"6 Antigua and Barbuda 17.0608 \n",
"7 Argentina -38.4161 \n",
"8 Armenia 40.0691 \n",
"9 Australia Australian Capital Territory -35.4735 \n",
"10 Australia New South Wales -33.8688 \n",
"11 Australia Northern Territory -12.4634 \n",
"12 Australia Queensland -28.0167 \n",
"13 Australia South Australia -34.9285 \n",
"14 Australia Tasmania -41.4545 \n",
"15 Australia Victoria -37.8136 \n",
"16 Australia Western Australia -31.9505 \n",
"17 Austria 47.5162 \n",
"18 Azerbaijan 40.1431 \n",
"19 Bahamas 25.0343 \n",
"20 Bahrain 26.0275 \n",
"21 Bangladesh 23.6850 \n",
"22 Barbados 13.1939 \n",
"23 Belarus 53.7098 \n",
"24 Belgium 50.8333 \n",
"25 Benin 9.3077 \n",
"26 Bhutan 27.5142 \n",
"27 Bolivia -16.2902 \n",
"28 Bosnia and Herzegovina 43.9159 \n",
"29 Brazil -14.2350 \n",
"30 Brunei 4.5353 \n",
"... ... ... ... \n",
"229 Vietnam 16.000000\n",
"230 Zambia -15.416700\n",
"231 Zimbabwe -20.000000\n",
"232 Canada Diamond Princess 0.000000\n",
"233 Dominica 15.415000\n",
"234 Grenada 12.116500\n",
"235 Mozambique -18.665695\n",
"236 Syria 34.802075\n",
"237 Timor-Leste -8.874217\n",
"238 Belize 13.193900\n",
"239 Canada Recovered 0.000000\n",
"240 Laos 19.856270\n",
"241 Libya 26.335100\n",
"242 West Bank and Gaza 31.952200\n",
"243 Guinea-Bissau 11.803700\n",
"244 Mali 17.570692\n",
"245 Saint Kitts and Nevis 17.357822\n",
"246 Canada Northwest Territories 64.825500\n",
"247 Canada Yukon 64.282300\n",
"248 Kosovo 42.602636\n",
"249 Burma 21.916200\n",
"250 United Kingdom Anguilla 18.220600\n",
"251 United Kingdom British Virgin Islands 18.420700\n",
"252 United Kingdom Turks and Caicos Islands 21.694000\n",
"253 MS Zaandam 0.000000\n",
"254 Botswana -22.328500\n",
"255 Burundi -3.373100\n",
"256 Sierra Leone 8.460555\n",
"257 Netherlands Bonaire, Sint Eustatius and Saba 12.178400\n",
"258 Malawi -13.254308\n",
" Long confirmed txt \n",
"1 65.0000 273 Afghanistan-:273 \n",
"2 20.1683 277 Albania-:277 \n",
"3 1.6596 986 Algeria-:986 \n",
"4 1.5218 428 Andorra-:428 \n",
"5 17.8739 8 Angola-:8 \n",
"6 -61.7964 9 Antigua and Barbuda-:9 \n",
"7 -63.6167 1133 Argentina-:1133 \n",
"8 45.0382 663 Armenia-:663 \n",
"9 149.0124 87 Australia-Australian Capital Territory:87 \n",
"10 151.2093 2298 Australia-New South Wales:2298 \n",
"11 130.8456 21 Australia-Northern Territory:21 \n",
"12 153.4000 835 Australia-Queensland:835 \n",
"13 138.6007 367 Australia-South Australia:367 \n",
"14 145.9707 72 Australia-Tasmania:72 \n",
"15 144.9631 1036 Australia-Victoria:1036 \n",
"16 115.8605 400 Australia-Western Australia:400 \n",
"17 14.5501 11129 Austria-:11129 \n",
"18 47.5769 400 Azerbaijan-:400 \n",
"19 -77.3963 24 Bahamas-:24 \n",
"20 50.5500 643 Bahrain-:643 \n",
"21 90.3563 56 Bangladesh-:56 \n",
"22 -59.5432 46 Barbados-:46 \n",
"23 27.9534 304 Belarus-:304 \n",
"24 4.0000 15348 Belgium-:15348 \n",
"25 2.3158 13 Benin-:13 \n",
"26 90.4336 5 Bhutan-:5 \n",
"27 -63.5887 123 Bolivia-:123 \n",
"28 17.6791 533 Bosnia and Herzegovina-:533 \n",
"29 -51.9253 8044 Brazil-:8044 \n",
"30 114.7277 133 Brunei-:133 \n",
"... ... ... ... \n",
"229 108.000000 233 Vietnam-:233 \n",
"230 28.283300 39 Zambia-:39 \n",
"231 30.000000 9 Zimbabwe-:9 \n",
"232 0.000000 0 Canada-Diamond Princess:0 \n",
"233 -61.371000 12 Dominica-:12 \n",
"234 -61.679000 10 Grenada-:10 \n",
"235 35.529562 10 Mozambique-:10 \n",
"236 38.996815 16 Syria-:16 \n",
"237 125.727539 1 Timor-Leste-:1 \n",
"238 -59.543200 3 Belize-:3 \n",
"239 0.000000 0 Canada-Recovered:0 \n",
"240 102.495496 10 Laos-:10 \n",
"241 17.228331 11 Libya-:11 \n",
"242 35.233200 161 West Bank and Gaza-:161 \n",
"243 -15.180400 9 Guinea-Bissau-:9 \n",
"244 -3.996166 36 Mali-:36 \n",
"245 -62.782998 9 Saint Kitts and Nevis-:9 \n",
"246 -124.845700 2 Canada-Northwest Territories:2 \n",
"247 -135.000000 6 Canada-Yukon:6 \n",
"248 20.902977 125 Kosovo-:125 \n",
"249 95.956000 20 Burma-:20 \n",
"250 -63.068600 3 United Kingdom-Anguilla:3 \n",
"251 -64.640000 3 United Kingdom-British Virgin Islands:3 \n",
"252 -71.797900 5 United Kingdom-Turks and Caicos Islands:5 \n",
"253 0.000000 9 MS Zaandam-:9 \n",
"254 24.684900 4 Botswana-:4 \n",
"255 29.918900 3 Burundi-:3 \n",
"256 -11.779889 2 Sierra Leone-:2 \n",
"257 -68.238500 2 Netherlands-Bonaire, Sint Eustatius and Saba:2\n",
"258 34.301525 3 Malawi-:3 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"\t\n",
"\t\t \n",
"\t\t\n",
"\n",
"\n",
" \n",
" \n",
"\n",
"\n",
" \n",
"\n",
"\t\n",
"\t\n",
"\t\t
\n",
"\n",
"\t\n",
"\n"
],
"text/plain": [
"HTML widgets cannot be represented in plain text (need html)"
]
},
"metadata": {
"text/html": {
"isolated": true
}
},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"\t\n",
"\t\t \n",
"\t\t\n",
"\n",
"\n",
" \n",
" \n",
"\n",
"\n",
" \n",
"\n",
"\t\n",
"\t\n",
"\t\t
\n",
"\n",
"\t\n",
"\n"
],
"text/plain": [
"HTML widgets cannot be represented in plain text (need html)"
]
},
"metadata": {
"text/html": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"x <- data.confirmed.original\n",
"x$confirmed <- x[, ncol(x)]\n",
"x %>% select(c(Country.Region, Province.State, Lat, Long, confirmed)) %>%\n",
" mutate(txt=paste0(Country.Region, '-', Province.State, ':', confirmed))\n",
"map <- leaflet() %>% addTiles()\n",
"#marker\n",
"map %<>% addCircleMarkers(x$Long, x$Lat, radius = 2+log2(x$confirmed), stroke = F,\n",
" color = 'red', fillOpacity = 0.3, popup = x$txt)\n",
"map\n",
"\n",
"map %>% setView(5, 52,zoom = 6)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"world.long <- data.long %>% filter(country =='World') # can be also filtered for different countries\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAG1BMVEUAAAAA/wAzMzNNTU2g\nIPDr6+vy8vL/AAD///9bP1mOAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dC3uj\nOhJE8Tq58f//xTt+C5CEHtV0Caq+3TuTGea4g/pEGIOYboqidGfyLkBRjhCJpCiASCRFAUQi\nKQogEklRAJFIigKIRFIUQCSSogAikRQFEImkKIC0ijRNJf9yWv13/rJT/o/m/6K81Gn1m88f\nPOueZuVHwfMto/9OUT5p7Iup7J9Oz/9Mq1dKW5OgTjWlTpHfpeuJKjrfMvl9KMozbW0RmWPS\nG04R7XxFmv9Veq6bFv9AIimp9Ij0+N3zWCf6y20p0uv46P0nU/hX3z+KHTfOCe/tUq8cbrmu\nOyHSdJu+hSz+JvKVooTpFOnVttFfvn+/+Ovp/dW0EOn7l7GpZPYC05Qv4Mtd1b0Q6WveDHz7\nVC6RlO30zki38Khrmn31+qPFpLT+ZfpaNPub5QsmTZ1vXijS8mdBpPhp+Q8kkpJKr0jf01mv\nLxaHZk0ifU6OTdmJJ9gk+GqaMeacaf6f97+Ypjl79prBfySSkkqPSKu5YVpu0T4jRV4wOWXF\npsQp+IeLqub/evmtTKttI0YpyiKNbRF6EXFj2Y+zhlxslVQs8nqBKKmp6vsOLMJ5l7H06OFz\nzMD5P5BISiqtbfE9+Hr2a+Ks3awFw3Nqz69WMq0ODQPK7HW+Db945Y9FsbN270O/4ODx8wKf\ns3afDd+bLr9SlFVG6YtVnWWFV3x7o+wJhTKjtM+0/EIiKUwZpn3mJhUeYdV8d8PsCYUxah9F\nAUQiKQogEklRAJFIigKIRFIUQCSSogAikRQFEImkKIA0ifTbm34CGQVTCieKiWLPrINKJDCF\nrvuBKCaKPVMiuVLouh+IYqLYMyWSK4Wu+4EoJoo9UyK5Uui6H4hiotgzJZIrha77gSgmij1T\nIrlS6LofiGKi2DMlkiuFrvuBKCaKPVMiuVLouh+IYqLYMyWSK4Wu+4EoJoo9UyK5Uui6H4hi\notgzJZIrha77gSgmij1TIrlS6LofiGKi2DMlkiuFrvuBKCaKPVMiuVLouh+IYqLYMyWSK4Wu\n+4EoJoo9UyK5Uui6H4hiotgzJZIrha77gSgmij1TIrlS6LofiGKi2DMlkiuFrvuBKCaKPVMi\nuVLouh+IYqLYMyWSK4Wu+4EoJoo9UyK5Uui6H4hiotgzJZIrha77gSgmij1TIrlS6LofiGKi\n2DMlkiuFrvuBKCaKPVMiuVLouh+IYqLYMyWSK4Wu+4EoJoo9UyK5Uui6H4hiotgzJZIrha77\ngSgmij0TItI1Is31eg1+kUiGEFIUE8WeiRDpGhHp+vz/dabZvsWOQKHrfiCKiWLPBIh0fany\nnnyuC5E0IxlDSFFMFHvmF/pTsnHm0O4a/uYr0suu/92znrgU5Vj5+anbPinS9fqYmT5f6dDO\nHEKKYqLYM5/Qn5Lp6HdjRrq+zy+EWt0kkjmEFMVEsWfeoaUabR/arecniWQPIUUxUeyZv7dy\njQrfI92CryTSDhBSFBPFnlmj0cbnSLOPjPQ50n4QUhQTxZr5TyNd2eBJoet+IIqJYst8zEYS\nyZNC1/1AFBPFkvk6qJNInhS67geimCh2zM97I4nkSaHrfiCKiWLFDE4xSCRPCl33A1FMFBvm\n7EydRPKk0HU/EMVEsWAuTnhLJE8KXfcDUUwUPHP1uZFE8qTQdT8QxURBMyMfv0okTwpd9wNR\nTBQsM3oVg0TypNB1PxDFREEyExcDSSRPCl33A1FMFBwzeU2dRPKk0HU/EMVEQTEzl6Z+oH8l\nFUgkLIWu+4EoJgqGmb3C+wX9K/FIIqEpdN0PRDFREMyNGyXu0L8yjSQSnELX/UAUE6WfuXm/\n0a1wMnpuLJGwFLruB6KYKL3M7dv2iiejZwUSCUuh634gionSxyzRSGftXCl03Q9EMVF6mEUa\n6fS3L4Wu+4EoJkoHs0wjieRLoet+IIqJ0szcnI4+b40kkieFrvuBKCZKI7PgqK4e+thYImEp\ndN0PRDFR2pilR3VV0OfGEglLoet+IIqJ0sIsP6qrgL43lkhYCl33A1FMlHpmzVFdMfS7sUTC\nUui6H4hiolQzq47qSqHBxhIJS6HrfiCKiVLJrDyqK4PONpZIWApd9wNRTJQ6ZoNGEsmXQtf9\nQBQTpYa5NR0lLqqTSJ4Uuu4HopgoFcy8RulrUyWSJ4Wu+4EoJko5M+tR7gpvieRJoet+IIqJ\nUsrMHtblb5SQSJ4Uuu4Hopgohcx2jSSSL4Wu+4EoJkoRMzcdbd+2J5E8KXTdD0QxUUqY2emo\nFZraWCJhKXTdD0QxUbaZfdNRApreWCJhKXTdD0QxUTaZvRpJJF8KXfcDUUyULWbOo2ZobmOJ\nhKXQdT8QxUTJMzOHdeVrA0kkTwpd9wNRTJQsEzAdraEbG0skLIWu+4EoJkqGCZmOltDNjSUS\nlkLX/UAUEyXNxExHvxLJl0LX/UAUEyXFzJ70boWWbCyRsBS67geimCgJZv9J7wi0aGOJhKXQ\ndT8QxUSJM3HT0a9E8qXQdT8QxUSJMVFnGWbQ0o0lEpZC1/1AFBMlwoROR78SyZdC1/1AFBNl\nxQRPR78SyZdC1/1AFBNlwQSerPtCqzaWSFgKXfcDUUyUeTpvmIhHInlS6LofiGKihPn5STMb\nD+vukUieFLruB6KYKN/cj+qSzHaNJJIvha77gSgmyic/OWaPRxLJlULX/UAUE+WV10mGOLPj\nsC4NTW0skbAUuu4Hopgoz7xPMkSZfRpJJF8KXfcDUUyUe77nvGPMXo8kkiuFrvuBKCbK7+yc\nd4TZ7ZFEcqXQdT8QxUSZf3a0Yna+PYpDsxtLJCyFrvuBKCbK/FKGJROgkUTypdB1PxDFQ1le\nEbRgQjySSK4Uuu4Holgo6wvr5kyMRxLJlULX/UAUByV2fWrIRLw9WkG3N5ZIWApd9wNRDJT4\nZd4BE6WRRPKl0HU/EOVPSd0t8WXiPJJIrhS67gei3CnJuyU+TKBHEsmVQtf9QJQzJXPz3osJ\ne3sUQgs3lkhYCl33A1G+lNzNe08mVCOJ5Euh634gypOSfRbskwn2SCK5Uui6H4hypGQ1ejCx\nh3UvaMXGEglLoet+IMqPsuHR7w2vkUTypdB1PxDlRckf1t1joJFE8qXQdT8Q5UTZ1ugPuKu+\nkUieFLruB6JcKJvT0f2oTiINPMKGEFKUB6XsqE4ijTvClhBS1P6U0ndHEmnUEbaFkKJ2p2xq\n9D7LIJEGHWFjCClqb0qxRxJp0BG2hpCi9qUUHNZ9znpLpBFH2B5CitqVUj4dlTPrIpE8KXTd\nD0TtSNmejmYfwkqk4UZ4Fwgpaj/Ktkbzixkk0mgjvA+EFLUXpWA6WlwUJJHGGuG9IKSonSgF\nGi0vrpNIQ43wbhBS1D6UkuloeZGqRBpphPeDkKL2oNQf1m0zGyORPCl03Q9E2VOKNIrcMyGR\nRhnhfSGkKGtKiUbxW49sRbqUbCyRsBS67geibClFGiVu4bMU6VLikURCU+i6H4iypBRqlLgV\n1k6kMo0kEpxC1/1AlB2lTKP0HeVWIpVqJJHgFLruB6LMKGUaZVZmsBGpXCOJBKfQdT8QZUQp\nnY4yK5xYiFSjkUSCU+i6H4gyoRRqlF8oCC/SP410+tuTQtf9QJQBpVSjjQW30CI9ZiOJ5Emh\n634gCk4p1mhr4TqsSK+DOonkSaHrfiAKTKnQaGsBSKRIn/dGEsmTQtf9QBSUUq5RwTqquF0V\nnGKQSJ4Uuu4HonCUnwqNStYjRu2q2Zk6ieRJoet+IApFqbGobF1vSGWXxQlvieRJoet+IApC\nqZqMfgvXxwdUtv7YSCJ5Uui6H4gCUP5ZVEcpe85Ed2WxT18lkieFrvuBqG7KYzKqohQ+r6Wz\nsvhFDBLJk0LX/UBUJ+V1TFdDKX3uUVdlqWuBJJInha77gaguyuetUQWl+PlhPZUlL6mTSJ4U\nuu4HojoowRmGckr5c/jaK8tcmiqRPCl03Q9ENVNmJ+qKKRXPs2ytLHuFt0TypNB1PxDVRlme\n7y6l1DwXtq2yjRslJJInha77gagWyvpTo0JK1fOVWyrbvN9IInlS6LofiKqnxD58LaPUPae8\nurLlVQzdUIkEptB1PxBVS4lfw1BEqfOotrLChYGqKpBIWApd9wNRlZTEpUAllEqPqiormYyq\noRIJTaHrfiCqipK8pK6AUutRRWUVKzFIJE8KXfcDUTWU9JWp25Rqj0orK56MaqCvjSUSlkLX\n/UBUBSVzhTfw26pj1i0LJJF8KXTdD0QVU7J3SmxS6iekgsrqJqNCaLixRMJS6LofiCqg/DzS\nRWnwaJNZb1EBdL6xRMJS6LofiMpSChQqqqXFozyzYTLahq42lkhYCl33A1EZSsVtr/lamjzK\nMRstykMjG0skLIWu+4GoFKXu7vFsLW0eJZmtk1EWGt9YImEpdN0PRMUplWsw5GrZXL+ujtlj\nURKa2lgiYSl03Q9ErSmFb4sKa2nVKMrsmoxS0MzGEglLoet+IGpGKT23UFxL83QUY3ZbFINm\nN5ZIWApd9wNRb0qzQ7laOjRaMvsnowh0a2OJhKXQdT8Qdet1KFNLl0cB8wKy6Fci+VLouh+G\nAjj0SKyWnsO6gImTKIAWbiyRsBSy7segXg6Z7eZOjV5MqEW/EsmXwtP9GFQ4D1nt5m6P7ky0\nRhLJl0LR/RjU6ljOZjf3HtY9mHiNJJIvxbv7Qajo+yGT3QzQKLPIY08kkiflACIlTypY7GaE\nR5cLcFd9s6dIytHyT6IdX+3vr5/xTyOqaEY694z0s30fBHw3N09HlyALJi46tPOkjCdSgUEF\nlJZaWj3qfCZYaSSSJ2UokSo/Y8Xu5sazddEPXSUSkQInEumnfBbKUPpqadUox8RGInlSuEVq\nE2hJAdTSMh1lLqOTSEQKHFwks8tNWyi1Gl02rkWVSEQKHFSkxsO4WGC7ucajLYfeTHwkkieF\nR6RQIKId9HsrPqwrcujJbC8HBJVIYAqFSDtdJdeUAo3CT4jKIpGIRvgAIiUP42h20D+NMpRq\ngd6RSDQjjKI4iPTzs/k+iGQHPWajOKXRoFckEskI4yjGIv1EsltVnZTXQd2K0udQnImIRPKk\nAIe0URq7qroon/dGMwpoiQWJRDDCWEo35CsNxXkLFOV7iuFNAUxEKyY0EsmTUgXJzzkHEik8\nVXfDOvRm4iORPCk5SOWB2nFECjSCO/SIRCJSwFQkv2tEgahGyns6ejlk0fQSiUgBE5F6ThIc\nRKS7RuE8JJEkUgUEcIXbMURaHctJJIlUBuG6RhSIqqXE3w9JJIm0GZRDj4ws0suh2HV1Ekki\nZfN0iK77gagCyvx60+j1qRJJIqXzmYjouh+IylFi15vGr/OWSBIpleBwjq77gagEJfnRkESS\nSDWZvSui634gak3JfryauPFIIkmkaOYnF+i6H4iaUTYvUUjdwCeRJFIky5N0dN0PRL0pRZf5\nJG+ElUgSaZX1uW667geibjWXykkkiVScyEdGdN0PQ9VdbppemUEiSaRFYh+9knU/BlV/uWlm\nhROJJJEWWYr0VxazekxQTZeb5r5HiSSR5gk8+hpSACkVyl+kxcGcRMpsLJGaKR+RFvd/lmbL\nJmeR1u+IiinZnxESSSLN8vZoLkNtKZnDPkeR4ucVimdbaC0lkUjjivTyaNk1naWEfegjUubk\nXJZS/P5PIkmkMA+R1p2DKOU1O+0vUvszHyoe0yKRJFKQp0dWpTxSf54vmYKqCj4lSlKqKpRI\nEinIXSTj29a+qG6htqoq+6g1QamsaziRpqlkY4nURElNSLZvbJptylZVfMFClFJd0GgilWgk\nkVopqQlphzMELTYlq6q67CdCafB6LJGKpqNfidRISU5Ie51qq7QpjqpdqnFFaZoehxKpUCOJ\n1EZJe7TrOetymyKohgVP55TW92wjiVTskURqopCI9EjL1UaNywaHlPYzH+OIVHpY99hYItVT\nMh45fYq6JVOIal97+03pOyM/jEgVGkmkJgqfSPfkuvuD6lrB/tZx3jBSCzAGzGnS50gWlOVD\nJHZYkaAelezyF6rrORCYj4YHEel+VCeR0JTI8ql73Ejdhop+dHtHdUxGLyTTYNkyp2qoRNqi\nxNcg5hXpmcXlRbfmyQh/FS2/SK+TDBIJR0mt5L3LigQY1F2Ef5NRw0GZ0X0d7CJ9ztVJJBQl\nvR7+QCI93hnVniaIb8w0WGbM77k6iQSh5B4rsc/SHhDU851ReOI6eSNhsIlhQdwihR8dSSQA\nJf9wlmFEer8zSqJWZtnf+84s0uyjI4nUS9l6xhHxQgthgtN0lLsZGAxzcSWDROqjbD8pbAiR\nGtf/yYWJYsBcXskgkToo0cmo4uiHRaTF2W623YwOgrm6IkgiNVPWn7tWf5xPIVL7QlrZMFHQ\nzMgFqhKpLcvJqO2KGAKRzB6AzEQBM2MXqEqklvyzKKQ0X1bmL1LsEgaa3QyjQJnx+yUkUn0e\nk9GHYrnMiDUqfikQyW4GUoDM1G1HEqk2r2O6F6XvEmdfkZqWdiwOEwXHTN52JJHq8nlrdKcw\n3W1Tj0pemEqwm8EUFDNzF6xEqkr4QPJ9lmK0QmUu8PbfzWgKhpm9mVwiVSQ4U0d321odqnWx\n4YowUSDM/M3kEqk4M40wtTiJtHG7EZMCNCJtrW0ikUoTPODoD1WLi0jtq3ZXhYnSzdxeIkgi\nleVn+YCjUUUquPmVSQEOkQqWCJJIJVlpNKpIPcvfV4aJ0scsWxe/qoKTihR73N6IIhUuxcCk\ngL9IhQs/SqTNvKcjgyUJdhWpeEUTJgXcRSpd+FEibeUzHRnUsqNIfc+RaAgTpZlZvg6xRMon\nPh2hatlNpKr1tZgU8BWpZjnvqgpOJ1JKo7FE6n0gS1OYKG3MmmXxJVI2T4+iFzGMI1L1ao9M\nCjiKVLUsvkTK5CfxLHJcLXuIVL9oKpMCfiLVeSSR0slpNIxILYsPMyngJVLVYV0p9LvxmUR6\nPPjVeJFUa5Ha1vBmUsBJpFqNJFIq98M6+/UPjUVqXAqfSQEXkaqnoxLobOPTiJR8Djm2FlOR\nup+11xcmSh2zQSOJFM+2R/QidTwmjEmB/UVqmY42ocuNTyJSgUfkInU9bY9Jgd1FatNIIkXy\nU+IRtUhdGnEpsLdIrR5JpFU2ztZBa7EQqesJynPUYSilzMbDujw0tvEJRCqajlC14EXqtuiX\nS4FdRWrXSCItU+oRo0iX/snojToYpYjZMR2loYmNDy9SsUdkIl1QEt3DpMB+InVpJJHmKfeI\nSaSHQ/ZXGw1M2Wb2TUcJaHrjg4tU4RGRSBcc6heIYqJsMns1kkhhajziEWnrwa/1YVJgH5H6\nPZJI85Qvn8oi0vudkURqZnYf1sWg+Y0PLdJPjUcsIoGfoAxEMVGyTIRGEumbOo9IRPqeqZNI\njUyMRxLpnUqPSEQiRjFR0kzIYd0Sur3xcUWq9YhDpOCjI4nUwkRpJJFeqfaIQqTwI1iJ1MDE\neSSRHqn3iEGk2aUMEqmeCfRIIt3T4BGBSPNLgiRSLRP29iiEFm58TJFaPPIWaXVpnUSqZEI1\nkki/jR45ihS/QFUi1THBHkmkRo+8REpe5C2RapjYw7oXtGLjA4rU6JGPSOaPIgeimChLJlwj\nidTqkYtI9o8iB6KYKPPgp6Pf04vU7JGDSPk79yRSaSYLOU8uUrtH+4u0cQOsRCrMZDLLnVuk\nDo92F2nrRnKJVJT7YZ1EAo9Nj0c7i7S9IINEKslkwHzm3CK1e7SvSAXrmkik7bzOMkgk7Nh0\nebSnSEXrA0mkzbxP1kkksEg9Hu0oUtkyWxJpI9+T3hIJOjZ9E9JuIpUuVyeR8gk+O5JIWJG6\nPNpLpOJVHyVSNuFnsBIJOTadE9JOIpWvniqRMplfyyCRoCL1ebSLSDWrEEukdBaXBEkk4Nj0\nTkh7iFS1mLdESmV1aZ1EQorU6dEOItUtii+REllfoSqRcGPTPSGZi1T7cAmJFE3sSm+JBBSp\n1yNrkaqf0SKRYoneMCGRYGPTPyEZi1T/rCOJFEn8xiOJhBOp2yNbkRqeGSaRVkndwCeRUGMD\nmJAsRWp69p5EWiZ5H6xEgonU75GhSG2PsJRIi6TvJ5dIoLFBTEh2IjU+ClYizZJbl0EioUQC\neGQmUusjlSVSmOzyJhIJswcgE5KRSO2PJpdIQfLLBEkkyB74uSE8shGpWSOJFGZjuS2JhNgD\nP7+8InV4JJE+2Vy2TiIB9kDXgidhDETq8UgivbO9+qNEgoj0R9QnIaT97dEK1RmiHVRPKVhF\nVSL1E+4nGoj6JID0aSSRXilZjVgidRMeJ+yI+uQL6fVIIt1Ttqq3ROolPE98E/XJB9LtkUT6\nLX7mEa1I14g01+t19Zf7FrvO6wMkoj55Q/o9kkjlzw5jFekaEen6VujKI9IPhPIOUiSARxKp\n/KFHpCJdX5POew668or0B6C8gxOp83RdiMKEaAeVUyoeekQq0kqd8Ku3Zf+7Zz1x7Zmf259v\nAYlcvAs4RJretBMkKdL1+piZliI9sq/1i3yvsCP6gXvDHNa9UKgQ7aBSStUz+MhnpOvr2G6m\nFc3JhuBKVaI+ucE8OrVIlc+yJBcpMz/5ixRe8U3UJzeYR2cWqfaRsPwiXWd/FJx78BZpducE\nUZ/gPDqvSPWPVuYW6XadnQan+hxpfgcST59c6LofiNqJ0vCEclqRSrNvsd8s7uSj6ZMLX/cD\nUftQGjySSI17YHlHLEufXAi7H4jag1J/WLfNbMzxRVrdWU7SJxcE5Bs61A6UJo0kUtse+Fn9\nCUefXBCQIHQoc0rbdJRntufoIkXuiKXokwsCEoYOZUxp1kgiteyB2J3lDH1yQUBmoUPZUto1\nkkgNeyC6QgNBn7w/P6LrfiDKktIxHSWZnTm6SJGVTvz75PM5LF33A1F2lD6NJFL9HogvBene\nJ9/rGei6H4gyo3RqJJEaRIquvOXeJxKpg9I7HcWYiBxZpMTaxN59ElxgR9f9QJQNpV8jiVS7\nB1JrfDv3SXihKl33A1EWFMB0tGKCIpEa00qZXfBN1/1AlAEFopFEqiw2+dAJibQLCk7BTEe/\nEqlWpNQa3659Mr8Dia77gSg0BaWRRKorNv0UJM8+WdzJR9f9QBSWApuOfiVSpUjJh05IpF1Q\nSApSI4lUVWzmsXyOfbK8tZyu+4EoIAWqkUSqKTb3eEu/Plkt0UDX/UAUjIKdjn4l0vAirZc6\noet+IApEgWskkSqKzT5vWSLtgsJQ8BpJpBqRco+39OqTyNpbdN0PRCEo02TR9BKplJCdkLz6\nJLaGHV33A1H9lPtRnUTyE+kn75FTn0TXgqTrfiCqmzJBKJFIpBLCz321Ez6R4muq0nU/ENVJ\neZ1kkEhOIj0WDcp6JJH2QXVRPufqJJKLSM/pKO+RS58kFvmm634gqoMSnPKWSA4iFWnk0iep\nxfLpuh+IaqbMPjmSSPuLVHBUV0DB1DJP8qETdN0PRLVRpsUHsBLJRaTt6WiTgqlllvTDW+i6\nH4hqoawvY5BIu4v0U6bR/n2SeQgSXfcDUfWU2NVAEml/kco0kkg7oaop0auBJJJEeiX3VD66\n7geiKimJi1Ml0u4ilXq0b59csk+3pOt+IKqOkro4VSLtLVLxhLRnn+Q1Iux+IKqKkrzIWyJJ\npE2NCLsfiKqhpG+WkEinF2lbI8LuB6LKKbl79yTS3iIVe7RPn5RoRNj9QFQxJXvvnkTaWaTy\nCWmXPinSiLD7gagCyvTIDrXYMyVSa7KUQo/4uh+IylIKFELWYs+USK3JUUo94ut+ICpDqVjQ\nRCLtLFK5R/Z9UuwRX/cDUUlK1bpAEmlfkSomJHORyj3i634gKkGpXF5LIp1WpAqP+LofiIpS\nqlepk0hnFanGI77uB6IilIbFHiXSviJVeGQrUpVHfN0PRK0oTWumSqRdRaqZkExFqvOIr/uB\nqDml7GT3FgUTiUQvUqVHfN0PRIWU9gW8JdIZRar1iK/7gagPpXUymlOAkUgpQpVHdiJVe8TX\n/UDUg1J4/YJ1LfZMidSaNaXeI77uB6JufVPRh4KPRKIWqcEjvu7HoRAW/UqkfUWq8kgimaMe\nB3TmV2JRMQ8hUt2EZDTCLR5RdT8KNUGXv5dIJxOpySOe7gehwnMLEimzsURKUNo84uh+DGp1\ng5FEymzMKVKdRxYj3OiRe/djUPGb9CRSZmNKkSonJIMRbvVofJEyN7pKpMzGEilKOaVIWzeL\nS6TMxhIpRmn2aFSRihZckEiZjSlFqvQIPsLtHo0m0jQVL1oikbIbM4pUOyGhR7jDo2FEqhEo\nTcHUwsmUSK15U3o8GkGkeoNiFEwtoEgkQpG6PCIXqdmhGQVTCzISKUqo9UgiFaD6HHpTMLXA\nI5FihOoJCTrCfR7xiVR1OiEfiZTZWCLNKZ0esYg0TTOBmBSQSDuJ9ON5aNfrka9IC316UJiC\n7Cj2zPFFqvYIN8LdHnmIlNSnHoUpaA+KPXN0kRomJNgI93u0n0gF+pSiMAXtS7FnDi9SvUfn\nEmn0j1Il0i4itUxIqBEGeLTD5QgY1OgUe+boIjV4BNqPCI/sRDrMR6kSaQ+RmiYkzH68QChG\nIlGsJcdEsWcOLlKLR0cXqf/jVCYFJNIOIrVNSJD9eMGMBl4kxEUJTApIpD1EavIIsR8voNGA\nQKYwCCCTAhLJXqTGCelgIr3dIbnaiJNizxxapDaPAPvxAqEgIOhl5IAoJoo9c2CRWiekA4kU\nHslJJFfmyCI1etS/Hy8QSjfEYj1GIIqJYs8cV6TmCal7P14glDZI+ryCRHJlDixSq0cDi5Q7\nKSeRXJnDitQ+IfXuxwuEUg/ZOLctkVyZ44rU7FHnfnxfY7ezSJufEEkkV+aoInVMSAOKVPJB\nq0RyZQ4rUrtHffvxc9H3XiKVXq4gkVyZg4rUMyGNJFLFNT8SyZU5qkgdHnXtx+9dSPYi1V05\nJ5FcmWOK1DUh9ezH4G4+a5Fqrz+VSK7MQUXq8WgEkXz3q30AABcXSURBVBou45ZIrswhReqb\nkDr2Y3h7uaFITTdDSCRX5pgidXlELlLrPUUSyZUpkSoyW+/EQqSeO/MkkitzRJE6PWrej/N1\ng+Aidd7eKpFcmRKpPJYisaxYAkQxUeyZA4rUeaqheT8uFrJDisSzYgkQxUSxZ44oUqdHbCJR\nrVgCRDFR7JnjidQ9ITXux+XKqiCRMBb9SiRn5oAi9XrEJBJMI4nkzBxOpP4JqW0/rpb6BozG\nNNF1PxDFRLFnjidSt0dN+3G9ZH73d3Ofjei6H4hiotgzJVJZ4CI9D+rouh+IYqLYM0cTCeBR\ny36MPMOl67uhXR4ViGKi2DMlUlHAIvEujwpEMVHsmYOJBDjV0LIfYw8Va/9uglN1dN0PRDFR\n7JmjiQTwqH4/Rh/O1/rdzM5403U/EMVEsWeOJRJkQvIVaf7BEV33A1FMFHvmYCIhPKrej/Gn\nxTZ9N/TrDANRTBR7pkTaDkyk9XUMdN0PRDFR7JlDiYTxqHY/Jh5fXv/dRC4Hout+IIqJYs+U\nSFtJeFQ/GrHL6ui6H4hiotgzRxIJc6rBS6To5al03Q9EMVHsmUOJ9OcwNimPakcjfpk3XfcD\nUUwUe+ZAIv2bkCRSOnQoJoo9cySR/hzGJulRZS2J+47ouh+IYqLYMyVSPiCRUvfv0XU/EMVE\nsWeOI9L9VMPuY5P2qKqW5H2wdN0PRDFR7JkDifS3/9hkPKqpJX0/OV33A1FMFHvmMCI9zn2P\nKdJIT1AGopgo9sxxRPqrLTb9XZRumPNIIo1EsWdKpEwwIuUWCqLrfiCKiWLPHEWk51UN+45N\n1qMNyvQNopSC0KGYKPbMYUT6qy42/V2UbZb3KEspXq6OrvuBKCaKPXMQkV6X2Y0hUsWqj3Td\nD0QxUeyZo4j0V19s+rso2mrDozRl6CcoA1FMFHvmGCK9r/vecWy2PEpR6hYhput+IIqJYs+U\nSIm0iTT8o8iBKCaKPXMQkf4aik1/FwXbbHoUpYz/KHIgioliz9xVpNb83P72fLl7Lg3/Ztp1\npyiHyK4z0ucW891+yG1PSCtK0xNa6KYRIIqJYs8c4dDue4v5XmNT4NGS0vagI7ruB6KYKPZM\niRRLtUitDwyj634giolizxxCpM+aJzuNTYlHIaX9uXt03Q9EMVHsmQOIFCwetM/YFHkUUDoe\nX0nX/UAUE8WeOYJI30W4GEXqegwsXfcDUUwUeya/SOFqdruMTZlHb0rf05Tpuh+IYqLYMyXS\nKjUi9T6VnK77gSgmij2TXqTZ8qp7jE2hRw9Kp0aE3Q9EMVHsmRJpkVKP7pRuj/i6H4hiotgz\n2UWar/dNJVLvYd1mKYOjmCj2TIk0T7FHgOnol7D7gSgmij2TXKTFAyh4RJomSC103Q9EMVHs\nmRJplmKPQLXQdT8QxUSxZ3KLtHwiEolIj3dHEmkgij1TIoUp9AhXC133A1FMFHsmtUirR/RR\niDQBa6HrfiCKiWLPlEhBSjz6nPSWSANR7JnMIv387itSkUfYWui6H4hiotgzuUVaPnzZW6Tw\nM1iJNBDFnkks0npCsh2bAo/gtdB1PxDFRLFnUou09MhXpMUlQRJpIIo9k1ekyIRkOjabHlnU\nQtf9QBQTxZ7JLNLKI0+RVpfWSaSBKPZMWpFiE5Ll2OQ9ilzpLZEGotgzWUWKeuQmUuxKb4k0\nEMWeSSrSP4/2FSnnUfzGI4k0EMWeySlSwiO7scl6VEyBlHIYFBPFnkkp0t0jFpGS98FKpIEo\n9kxGkZIemY1NxqMKCqSU46CYKPZMQpHSHlmNTYtHEmkkij2TT6SMR3uLlF3eRCINRLFn0omU\n88hobJIeVVEgpRwJxUSxZ7KJlPVoX5E2lgmSSANR7JlsIt2T9MhmbOIeba5aJ5EGotgzCUVK\ne2QyNgmPKimQUo6FYqLYM/lEyni0n0gFqz9KpIEo9kw6kXIeWYxNq0cSaSSKPZNNpKxHBmMT\n86hsUW+JNBDFnskmErDYIkpEpMJFvSXSQBR75slFavdIIo1EsWdKpEWKHzIhkQai2DPPLdLK\no4pnHkmkgSj2TIkUpuaZRxJpIIo989Qi9XgkkUai2DMl0jd1z+CTSANR7JkS6Z3aR8JKpIEo\n9swzizT3yKUWuu4Hopgo9kyJ9Ez9o5Ul0kAUe6ZEeqThEeUSaSCKPfPEIvV5JJFGotgzJdJv\nm0cSaSSKPVMiNXokkUai2DPPK1KnRxJpJIo9UyI1eiSRRqLYM08vUqtHEmkkij3ztCL1eiSR\nRqLYM08uUrtHEmkkij3z3CJ1eCSRRqLYM88qUrdHEmkkij1TIrnWQtf9QBQTxZ55ZpG6PJJI\nI1HsmScVqX9CkkgjUeyZJxapzyOJNBLFnimRXGuh634giolizzynSACPJNJIFHumRGqnQEqB\nhQ7FRLFnnlakXo8k0kgUe+YpRUJMSBJpJIo986widXskkUai2DMlUjMFUAlf9wNRTBR75hlF\ngngkkUai2DMlUmsk0kAUe+YJRbrcEB5JpJEo9kyJ1BqJNBDFnnk+kS6/N4RHEmkkij3zdCL9\ne4MkkXZBMVHsmWcUCeKRRBqJYs88m0iQixoekUgDUeyZJxPp4RHRCNN1PxDFRLFnnk+kiWmE\n6bofiGKi2DPPJdLzDRLRCNN1PxDFRLFnnkqk14kGohGm634giolizzyZSBOA8opEGohizzyT\nSO/nTxCNMF33A1FMFHvmiUT6fIJENMJ03Q9EMVHsmacSaQJQPpFIA1HsmecR6eMR0wjTdT8Q\nxUSxZ55IpM8FDUQjTNf9QBQTxZ55GpG+HjGNMF33A1FMFHvmaUQKLrAjGmG67geimCj2zLOI\nFF6oSjTCdN0PRDFR7JkSqTUSaSCKPfMkIk2X4AuiEabrfiCKiWLPPIdIM4+YRpiu+4EoJoo9\n8xQiTb8SaX8UE8WeeQ6RZh4xjTBd9wNRTBR75hlEWkxITCNM1/1AFBPFnnkCkaZfieSBYqLY\nM48v0sojphGm634gioliz5RIe9ZiAyFFMVHsmYcXae0R0wjTdT8QxUSxZx5dpPsVDRLJBcVE\nsWceXKTHlUESyQXFRLFnnkCkpUdMI0zX/UAUE8WeeWyRohMS0wjTdT8QxUSxZx5apLhHTCNM\n1/1AFBPFnimRdqrFEEKKYqLYM48s0vMeJInkhGKi2DMPLFLKI6YRput+IIqJYs+USLvUYgoh\nRTFR7JnHFSnpEdMI03U/EMVEsWceVqTXIg0SyQ3FRLFnHlykmEdMI0zX/UAUE8WeeVSRnme+\nox4xjTBd9wNRTBR75kFFSnyCVEnB1GIOIUUxUeyZBxYp5RHTCNN1PxDFRLFnHkmk6ZvfjEdM\nI0zX/UAUE8WeeSiRgt8n3h4VUDC17AkhRTFR7JkHEmnmUTMFU8uuEFIUE8WeeUyRsh4xjTBd\n9wNRTBR75iFFynvENMJ03Q9EMVHsmccRqdgjphGm634giolizzygSFseMY0wXfcDUUwUe+Zh\nRHp7lDtdt03B1LIzhBTFRLFnHk2kbY2oRpiu+4EoJoo982AilXjENMJ03Q9EMVHsmUcRqcIj\nphGm634giolizzyUSGUeMY0wXfcDUUwUe+aRRCr0iGmE6bofiGKi2DMhIl0j0lyv1+AXa5Fq\nJiSmEabrfiCKiWLPRIh0jYh0ff7/OtPMrtiaCYlphOm6H4hiotgzASJdX6q8J59rINJ8vrIr\nViLxoZgo9kzcod01/M1KpP/ds564QHlUczHDK4pVkiJdr4+Z6SvSHu+RqiYkph+VdNMIEMVE\nsWcCZ6Tr+/xCoJVE2gFCimKi2DOxh3ar+Wl+Rs+q2KpzdlQjTNf9QBQTxZ5p8B7pFn41O6Fn\nVaxEYkQxUeyZwM+RZh8Zvb76HO9ZilTpEdMI03U/EMVEsWce4coGiUSJYqLYMyUSthYPCCmK\niWLPPIBItR4xjTBd9wNRTBR7pkSC1uICIUUxUeyZEglaiwuEFMVEsWeOL1K1R0wjTNf9QBQT\nxZ4pkZC1+EBIUUwUe6ZEQtbiAyFFMVHsmcOLVLNYQ5qCqcUJQopiotgzjyFSlUdMI0zX/UAU\nE8WeObpIDRMS0wjTdT8QxUSxZ0okXC1eEFIUE8WeObhILR4xjTBd9wNRTBR7pkSC1eIGIUUx\nUeyZY4tUseB3hoKpxQ9CimKi2DOPIFKlR0wjTNf9QBQTxZ45tEhtExLTCNN1PxDFRLFnSiRQ\nLY4QUhQTxZ4pkUC1OEJIUUwUe+bIIjV6xDTCdN0PRDFR7JkSCVOLJ4QUxUSxZw4s0uepsV0U\nTC2uEFIUE8WeOb5I1R4xjTBd9wNRTBR75rgiNU9ITCNM1/1AFBPFnjm8SPUeMY0wXfcDUUwU\ne+awIrV7xDTCdN0PRDFR7JmDi9TiEdMI03U/EMVEsWeOKtLzxtgmj5hGmK77gSgmij1zZJHa\nNKIaYbruB6KYKPbMQUXq8YhphOm6H4hiotgzxxWp2SOmEabrfiCKiWLPHFOkLo+YRpiu+4Eo\nJoo9c1SROjxiGmG67geimCj2zCFF6vOIaYTpuh+IYqLYM0cUqe/AjmqE6bofiGKi2DPHFKnL\nI6YRput+IIqJYs8cUKTeCYlphOm6H4hiotgzhxSpzyOmEabrfiCKiWLPHE+kbo+YRpiu+4Eo\nJoo9UyK5Uui6H4hiotgzhxOp3yOmEabrfiCKiWLPHE2k7jMNv1QjTNf9QBQTxZ45nkjdHjGN\nMF33A1FMFHvmYCIhJiSmEabrfiCKiWLPHE6kfo+YRpiu+4EoJoo9cyyRIB4xjTBd9wNRTBR7\npkRypdB1PxDFRLFnDiXSdEN4xDTCdN0PRDFR7JkSyZVC1/1AFBPFnjmWSBCPmEaYrvuBKCaK\nPXMgkS4T1dhIpIEo9sxhRLpcfiXSUCgmij1zEJHuS0FOXGMjkQai2DOHEOm5oqpEGgvFRLFn\njiDS6xSDRBoLxUSxZw4g0tcjqrGRSANR7Jn8Ir1PeUukwVBMFHsmvUifj44k0mAoJoo9k12k\nmUdUYyORBqLYM8lF+l7KIJFGQzFR7JnkIn0jkUZDMVHsmdwiLSYkqrGRSANR7JnUIgXXqEqk\n4VBMFHsms0jhtd4SaTgUE8WeSSzS2iOqsZFIA1HsmbQizZ9YLpHGQzFR7JmkIs01entENTYS\naSCKPZNRpMtleSesRBoQxUSxZ/KJtLLoVyINiWKi2DPZRIpp9PGIamwk0kAUeyabSNFIpBFR\nTBR7pkRypdB1PxDFRLFnjiDSxyOqsZFIA1HsmRLJlULX/UAUE8WeKZFcKXTdD0QxUeyZA4j0\n9YhqbCTSQBR7pkRypdB1PxDFRLFn8osUeEQ1NhJpIIo9UyK5Uui6H4hiotgz6UUKPaIaG4k0\nEMWeKZFcKXTdD0QxUeyZ7CLNPKIaG4k0EMWeKZFcKXTdD0QxUeyZ5CLNPaIaG4k0EMWeKZFc\nKXTdD0QxUeyZ3CItPKIaG4k0EMWeKZFcKXTdD0QxUeyZ1CItPaIaG4k0EMWeKZFcKXTdD0Qx\nUeyZzCKtPKIaG4k0EMWeKZFcKXTdD0QxUeyZxCKtPaIaG4k0EMWeKZFcKXTdD0QxUeyZvCJF\nPKIaG4k0EMWeSSvSJJEGRzFR7JmkIkU14hobiTQQxZ7JKNKU0IhrbCTSQBR7Jp9ISYtqix2B\nQtf9QBQTxZ7JJlJOI66xkUgDUeyZbCIBix2BQtf9QBQTxZ4pkVwpdN0PRDFR7JkSyZVC1/1A\nFBPFnimRXCl03Q9EMVHsmRLJlULX/UAUE8WeKZFcKXTdD0QxUeyZEsmVQtf9QBQTxZ4pkVwp\ndN0PRDFR7JkSyZVC1/1AFBPFnimRXCl03Q9EMVHsmRLJlULX/UAUE8WeKZFcKXTdD0QxUeyZ\nEsmVQtf9QBQTxZ4pkVwpdN0PRDFR7JkSyZVC1/1AFBPFnimRXCl03Q9EMVHsmRLJlULX/UAU\nE8WeKZFcKXTdD0QxUeyZEsmVQtf9QBQTxZ4pkVwpdN0PRDFR7JkSyZVC1/1AFBPFnimRXCl0\n3Q9EMVHsmRLJlULX/UAUE8WeKZFcKXTdD0QxUeyZEsmVQtf9QBQTxZ4pkVwpdN0PRDFR7JkS\nyZVC1/1AFBPFnimRXCl03Q9EMVHsmRLJlULX/UAUE8WeKZFcKXTdD0QxUeyZu4qkKMo8I4v0\nP+8CviEqJQhTVUy1ZNNYqESChKiUIExVMdWSjUTyDFEpQZiqYqolG4nkGaJSgjBVxVRLNicU\nSVFoIpEUBRCJpCiASCRFAUQiKQogEklRAJFIkFy9C2DP4XfQwCIxjc2VqZh3mGqi3EGxtNY5\nsEhEjcJTySw8ZfFUspnGUocWiWV47nVcaar5hqYk1h0US2OZA4t0pflB92/fP//HFe2ghrTu\ntFFFuo/LjaJRnj9t37+jiXZQQzp22qAiXYnG5rPrCWr5RDuoIT07bUyRnt8tyeB8jliIDl20\ngxrStdMGFolkXK6f99IU5TyjHdSQrp02pkjv79m5ikeuwf95oh3UkJ6dNqpIJEct7/BU8op2\nUEN6dtqgIj2/Z6LRISrlGe2ghnTstFFFehxyDzE4XtEOakj7ThtWJCUZIn2IStlIb6US6XAh\nmoeIStlId6VDiUR0FpWolEWIaiIqZSP9lQ4l0u0aXG/iHKJSFiEqiaiUjZxMJKazukSlBLm+\nLhcjCFEpG0GclxlMpPAyDu8QlfLJ8/QtRU1EpWzkdZjeBxlKpPdPDoLRISrlnVc5V4L2JSpl\nO+9Di75KRxHpc52J/8cjRKWEedRyfV7B7FwVUSklgRxaDCYSw884olJmuX4r8w5RKdlcv7+c\n5D1SMPt6jw1RKYtcX34TlEVUSiafI4rTnGwILnD3HhqiUpZ59S5DWUSl5HLFnXwdQqT3QSzB\nmxKiUoJcP4f57jURlbKd78fqp/gc6fmdUnxsQ1RKkPfCIgTTJFEpJXlWizBpBJGoLsYhKiXI\nsxsoCiMqZTu4wRxDJKZ3rUSlBIF8qIgJUSmbwZU5iEhM7UtUShCiw02iUjZzOpGY2peolCBE\nRRGVspWzHdrdqNqXqJQgRFURlbKV84mkKMSRSIoCiERSFEAkkqIAIpEUBRCJpCiASCRFAUQi\nKQogEklRAJFIigKIRFIUQCSSogAikRQFEImkKIBIJEUBRCIpCiASSVEAkUiKAohEUhRAJJKi\nACKRFAUQiaQogEgkRQFEIikKIBJJUQCRSIoCiERSFEAkkqIAIpEUBRCJpCiASKRo/vtkTP7G\nq9KAjhOJFI1E2gd0nEikaCTSPqDjRCJFE2v06Z7PF4vfBH/1/ZvUzp2S/FQ969ed/bvCl/73\nclPFi6briFcf2fg87XWe77Qq8Rljivx2+vx3sSszezYhUv4fpWHFLx0Tqe5FMyKtORJJ+e/n\nlYhI9x+90/c/wd88/+77l49fnjPZ9Pnbx9/89/dKpKffjOm7+e39at/ffKaAipf+798Xl39J\nveib8fnj79ezl3yA7smAps//o7PV4XL877ApmRlpCn7ULkWaSv+XObRbbJunVr508tAu2Gr5\na+QlEzNSquhT9Ngpvsn6FIm0npE2+vgzuaQO7d5zUexV+kR6UqKHdrMXnQsVzIalIgVzUPDq\niDHhzgm+xZaUiLTs5pI54b1Z5j3S6gf6Nq940+R7pOBFp9mv65pmu2cGmm7zLYOXPn6bHf87\nbEruZMP7jUPwU/z2feNyy7Ty96d17mTD8qd5fEb6vvEof+n7W5vci37fE737f5pui8rnuycA\nvd+yTd+iXzae4S2SRIonLhITf2oYO9g3Zbx3RoxEGjVn+DE/UDQaigKIRFIUQCSSogAikRQF\nEImkKIBIJEUBRCIpCiASSVEAkUiKAohEUhRAJJKiACKRFAUQiaQogEgkRQFEIikKIBJJUQCR\nSIoCiERSFED+Dz5xMTvyx2aUAAAAAElFTkSuQmCC",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAANlBMVEUAAAAA/wAzMzNNTU11\ndXV19XV5eXl5+Xl/f39//3+gIPDr6+vy8vL1dXX5eXn/AAD/f3/////IV51bAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAgAElEQVR4nO3dC3ujuLKoYRh3732We2V7/P//7OnENuKiS6lUQgK+\nemaSjquEZIk3OL7A8CQIojiG1gMgiDMEkAjCIIBEEAYBJIIwCCARhEEAiSAMAkgEYRBAIgiD\nABJBGASQCMIgbCANg2Q7w+brchBD/KZFd4P79oyULiu97c4bO6/K9+3yeR02/5huOOTqmvQ5\nyDY0vL4Mm37D6+OfP992vIu4rAz2f87YeVV+blZAWrc56OpadOn5bRYuHDwLrIO0LAj/NhxW\nDS4Cae9VMYa0TPW/unaQfv71Oqp6vz3XS/Y+En9uGeYpd5PnEUpsqofn4Dawynh+OnHsvSqr\nLXzqQj3PK7fjPt7qmkJ6T5D3m8uv0sPnp2G1ZC4pmGq3NlNDV97HVO8ce6/KtoNhiA/AbXcz\n7uOtrimk9w/b+XPJ1a+/7bfBrdcis+5vWHY9LP9fzPSqwdUgvX+ovSpxqctyIaQjra4tJPfE\nyfsH99O7UrFk09Mw0/fll0/Hw7DcnBvcssHlIO2zKmFIswdzbjizbZxide0gbX4LDesK/e8+\nT3/LX2XrIQybWs+cnzv2XpUIpEUTlx9mDVejOt7qmnQ5XwHPKqzv+eKur6qCi7ke8+YX0+u7\ne3Dv6W/V+8lj51XZFgQPVbNFOs3q2nTpDvOvmQk8P7S4s/Nnb14/bZZt8yDEdTc8n8Ps4cW0\n+el5nanwU7r+6fyx96q4glmv2y6Hz8HN/6zdQVf3bHvU2e7PkWIz97LFyFiyjle346Gp4mz3\n50gxrH8A0nHjbPfnULGUJHyElbNiHa9ux0MjiOMEkAjCIIBEEAYBJIIwCCARhEEAiSAMAkgE\nYRBAIgiDMID0JxbxbFk60VhQUNZBevPiKl9RxVVJDqp2XlSywyBKy9x8A0nfHkjqvKgESPJR\nAilcVHFVgGRU5uYbSPr2QFLnRSVAko8SSOGiiqsCJKMyN99A0rcHkjovKgGSfJRAChdVXBUg\nGZW5+QaSvj2Q1HlRCZDkowRSuKjiqgDJqMzNN5D07YGkzotKgCQfJZDCRRVXBUhGZW6+gaRv\nDyR1XlQCJPkogRQuqrgqQDIqc/MNJH17IKnzohIgyUcJpHBRxVUBklGZm28g6dsDSZ0XlQBJ\nPkoghYsqrgqQjMrcfANJ3x5I6ryoBEjyUQIpXFRxVYBkVObmG0j69kBS50UlQJKPEkjhooqr\nAiSjMjffQNK3B5I6LyoBknyUQAoXVVwVIBmVufkGkr49kNR5UQmQ5KMEUrio4qoAyajMzTeQ\n9O2BpM6LSoAkHyWQwkUVVwVIRmVuvoGkbw8kdV5UAiT5KIEULqq4KkAyKnPzDSR9eyCp86IS\nIMlHCaRwkX+2b77bbrfZNyDJB1FaBiSLDlpAunkg3V7/v78BKWMQpWVAsuigAaTbm8rn4HNb\nQRKuCpCMyoBk0UG7h3a3+T8cpLeuf76jfF2JTdzDKSDp2zeHdLv9HJmmn3holzuIvLL79kYg\nGXTQENLt8/zCnNUTSLmDyCrbOgKSSQdtj0jLn4CkGkROmccRkEw6aP7QbnYTkFSDyCjzOQpB\nWjwjJPgGJEHUgLRcAF5HUg9CXnbPeNbu5nmgEPsGJEkYQ5JG2aCAtIp7xtPfN98jbiCVbF5c\nBaQ2gxCX5UDy/ukah8QrFt1G2c4DpGXcA2VuvssgpZeMIxJHJG1JP5DuoTIgWXRgDOlrfRuQ\nqg9CVnYPlgHJogMgqfOikl4g3cNlQLLoAEjqvKikE0j3SFkMEq8jSdsDSZ0XlfQB6fNCbA6k\nCksGJCBpS7qANL2hAUjVOgCSOi8q6QGSe2MQkKp1ACR1XlTSAaTZG+yAVK0DIKnzohIgye8M\nkFwRkPYfRKJs/o7v77LHpu0UQNK3B5I6LyppDmnxyYnnn8fGEZBMOrCF9AWk/QcRLVt+Aum5\nZQQkmw6ApM6LShpDWn2Sz+cISCYdAEmdF5W0hbR2xJMN1ToAkjovKmkKaXM8AlK1DoCkzotK\nWkJan6EBSBU7AJI6LyppCGnrCEj1OgCSOi8q6QfSI7Q1N99A0rcHkjovKmkHyfeEHZCqdQAk\ndV5U0gyS94lvIFXrAEjqvKikE0iPyNbcfANJ394U0heQGgzCW+Z/JRZI1ToAkjovKmkEKfCO\nBiBV6wBI6ryopAtIj1DZ68YpgKRvDyR1XlTSBlLAEZDqdQAkdV5U0gRSyBGQ6nUAJHVeVNIC\nUtARkOp1ACR1XlTSHNIjWDbdOAWQ9O2BpM6LShpACjsCUr0OgKTOi0r2hxRxBKR6HQBJnReV\ntIW0/kQskKp1YAnpC0gtBrEsix2QgFSvAyCp86KSvSFFHQGpXgdAUudFJTtDijsCUr0OgKTO\ni0oaQvKcMghI1ToAkjovKtkXUuKABKR6HQBJnReV7Aop5QhI9ToAkjovKgGS/M4A6V0EpCaD\nmMqSjoBUrwMgqfOiEiDJ7wyQ3kVAajKIT1naEZDqdWAI6V8gNRnEpyzx1Hdwa26+gaRvDyR1\nXlSyHyTBAQlI9ToAkjovKtkNksQRkOp1ACR1XlSyFySRIyDV6wBI6ryoZCdIMkdAqtcBkNR5\nUQmQ5HcGSK8AUptB/I37vCzsCEj1OgCSOi8q2QXSfV4WcQSkeh0ASZ0XlewB6f4HSEBSrwqQ\nPrGAFHMEpHodAEmdF5XsMIj7vCzqCEj1OgCSOi8qAZL8zgDpJ76A1GQQ93lZ3BGQ6nUAJHVe\nVAIk+Z0B0k8Aqckg7vOyhCMg1esASOq8qKT2IO7zspQjINXrAEjqvKik8iA+bw0CEpC0qwKk\n2VvsfsqSjoBUrwMgqfOikqqDcG9VBRKQtKsCpNlbvr/L0o6AVK8DIKnzopKKg5h/dAJIQNKu\nCpCWZQJHQKrXAZDUeVFJvUEsPssHJCBpV+XikJaXLn+KHAGpXgdmkL6AtOcglo7+PEWOgFSv\nAyCp86KSnSDJHAGpXgdAUudFJZUGsXIEJCCpV+XKkDaOZMsIpHodAEmdF5XsAukhXEYg1esA\nSOq8qKTKILYP7IAEJO2qAOkTD+kyAqleB0BS50UlNQbheaYBSEDSrgqQ3vEQDSTcm5tvIOnb\nA0mdF5VUGITvqW8gAUm7KleF5H0JCUhA0q4KkF4BJEnjw0D6AtI+g/C/p6EbSERh/PsO040q\n9ood86IS60GsHfUGKb97ozRHJO2qXBJSwBGQgKReFSB9B5BkjYGkH9QJIYUcAQlI6lW5IKSg\nIyABSb0q14MUdpQDadzcOAWQ9O2BpM6LSrqDtHEEJJMOgKTOi0oMBxFxJIe0dQQkkw6ApM6L\nSuwGEXMkhuRxBCSTDoCkzotKzAaxcaSB5HMEJJMOgKTOi0qsBhF3JFzGkWftqnVgBOkLSFUH\nkXAkW8bRX+bmG0j69kBS50UlNoPYOgJSXmMg6Qd1HkhJR6JlHANlbr6BpG8PJHVeVGIxCI8j\nBaQxVObmG0j69kBS50Ul5YO4CxwJBjIGy9x8A0nfHkjqvKikeBA+RvmQxjFc5uYbSPr2QFLn\nRSWlncgcpTbzef0ISNU6AJI6Lyop7OTuz2dCml6HBVK1DoCkzotKyjq5+/Pba09EN+PezwCk\nah0ASZ0XlQBJOkog/Xk5ApJ5J/dAPg/S7A12QKrWAZDUeVFJSSf3QN5zVbHIZuZvVAVStQ6A\npM6LSgo6uYfyQMpvDCT9oI4N6f06rCfvu8xluJvFJyeAVK0DIKnzohJtJ/dwPgvS8hNIQKrW\nAZDUeVGJspN7JJ8BaRwFZW6+gaRvDyR1XlSi6+QeyXsvYO7fzPaEQd62UwBJ3x5I6ryopCUk\nzwmDvG2nAJK+PZDUeVGJqpN7JO915N2M74RB3rZTAEnfHkjqvKikHSTvCYO8bacAkr69CaQv\nIFl2co/k/Y48m/GfMMh74xRA0rcHkjovKmkFyesISPU6AJI6LyrJ7uS+/ETsKh9wtNmM3xGQ\n6nUAJHVeVJLXyX3zuXIVpPXLR/HRuPkGkr49kNR5UUlWJ56Pwy7bhxwty0KMgFSxAyCp86KS\njE68ZzlRQAo7AlK9DoCkzotK5J34z86waB90NC+LOAJSvQ6ApM6LSqSdeA9H6/YCSME/j8Kj\ncfMNJH17IKnzohJZJyFGy/ZhR1NZlBGQKnZgAekLSEWdhBnlQko4AlK9DoCkzotK0p3EGC3a\nRxy9yuIP64KjcfMNJH17IKnzopJExfaFo3D7FKQkIyBV7ABI6ryoJFpxD5xuy9s+5ui7TOAI\nSPU6AJI6LyqJVNxDZwnyto86+uO9yrJwNG6+gaRvDyR1XlQSrAif3MTfPgFJ5AhI9ToAkjov\nKglU3CMnN/G2jzuSHY+AVLEDIKnzohJvxT32UXJv+4QjIAHpgnHPbvFI5EfdQNYBJH37riGV\nDb3PI1L880aB9pED0vgdwmXkiFSvAwNIX0ASVtyTnzfyt485kg4kXObmG0j69kBS50UlswrB\nxyT8+bCjMXopPmFvbr6BpG8PJHVeVPKu8ByL5IMIQkpc+EjYm5tvIOnbA0mdF5V8V8TeByQY\nRMjRmLrwkbA3N99A0rcHkjovKsl4U2ogH3A0pi8zIezNzTeQ9O2BpM4LSoKP6OSD8DoaRWfH\nF/bm5htI+vZAUudTJT+IigfhgeT5uASQgKRdlc4h5b6XLhAbR5uDkWgzsTI330DStweSOh8u\nmT2iK+zksciPfkWCbmJlbr6BpG9fDukLSLO4r/4sKuvkMc/HPgALJCBpV6UrSPdP2HYyg6Q4\nPZCwzM03kPTtgaTO/4n4senkMeVTp2MAEpC0q9IY0o+f0sWJ5x/vfPAvI3k3sTI330DStwdS\nXn55DKoK6fHKpxWJBhIuc/MNJH17IMny/sdw1SEJDkbCgYTL3HwDSd8eSJK86ITCxoN4/Pxl\nVCJEWObmG0j69kBK5iPPJVSE9Hg9pgOSMA0k7arsAinxZrl6kB7vx3RAEqaBpF2VHSCl3nFa\nDdJo8ok9YZmbbyDp2xdD+jorpOQbtwVd6AbxV9EjllcNJFzm5htI+vZA8ofgbMKCLhSDeB2M\ngJSbBpJ2VapCkpxNWFSSNYjpTakPf75kIOEyN99A0rcHki/ukvaikoxBzF4yAlJ2GkjaVakI\nSfq2BUNIy1degZSdBpJ2VepBusvai0pkg1i9f+GxzhsMJFzm5htI+vZA2sbekDZvA+oH0u07\n3t9f356hb0ASxKUgST/cKipJD8Lzbrp+IH07mb78fL0FvgFJEleCdE/kc7pIVvjflNodpNvi\nn0BSbT5RBSR9ReBNqfMTnjSH9Hn09vEShvTPd5Qt+IXj31WYbrxs5ymD9NhGfhfxitCbUjuE\n9AwL4ogk3Hy86utsR6SXo8fDk99aKlmc14O6Y0B6AglImfkfSI9QfkVJvzhj+Hosiy5aQ7rN\n/wWkks3Hq04J6RHJLx7maRfHPcWQOuz1AYmHdkDKzd+nQ0K0/SN40Ep3Er6MhObBY3GZAFL0\nBSReR5JtPl51NkjOUar993FJtTjhy0ions4oLotCMl0yIF0JUs4nGAJP5sU6Wb1wNM/7tlQB\n0rC+cQog6dsDaRl5kH5KopZWG9m8/jrLe7diD2ntCEgmHQBpGQpIfzZP5gU7iV2Pxb8JIAnT\nQNKuShVI97xPMMwYBCzNN+J7O9CUD1A0h7RxBCSTDgohfQFpCi8lV+E/1eN0TJP0IBxIrGzr\nCEgmHQBpESWQvJSmiviFjYQPDaUDCZZ5HAHJpAMgLaIMkofSuyJ45uFXPvxsBZCEaSBpV6UG\npHvmJxg8Jd43EYVP4P3cNkn1UFDmcwQkkw6ANA8DSCsXPxXRS+3FX4gyhTR4y9x8A0nfHkjv\neF9swgDSgtJ3RcRR6vVcIEnTQNKuiimk6ayqJpBmQKLXN3o8iu9ETtngL3PzDSR9eyD9WVy1\nxQjSn9fbh/5WRBmV34mMsiFQ5uYbSPr2QJp9uDz7M3WpksdjDD10e8Q+q5E1CGkZkIoqqkL6\nOgOk+bnyjSH9Gf1PJrg/jfaDNITK3HwDSd8eSItrThhDGt9Pby/P+fDIePxoBmkIlrn5BpK+\n/eUhLa/dYgtpXFb4TqICJKM0kLSrYgMp7KgckuTSlXtBGsJlbr6BpG9/cUira4mZQgqeJSin\nEyNIQ6TMzTeQ9O0vDck97a151JUokV0Ddh9In7cGAalaB1eGNL0I6397QRmk8Om2sjoBkjAN\nJO2qFO+D0ylVle2jJdKLKe8CaXqvKpCqdXBdSPdXvugTDMGS8HnrMjuxgOTe8w2kah1cFtL7\nYstln2AIlYzJCqu8pAxIooKGkL4ODyn23ms9pOAJIPM7MYA0+xASkKp1cFVI9+988UeB/CVj\nssIuny6bf5gPSNU6uCik7ycanuUfBQJS1pIB6WyQ3CUnCrYfKgmfkljRSTGkxafLgVStg0tC\nejky2Id9JeFTEms6KYW0PEsDkKp1cEVI7+NRHUhjssI0nyhbne0ESNU6uCok3xX5MrfvLYmc\n21vVSRmkzfnyvW2nAJK+/QUhfS4lBqT3jVMASd/+epCmS/LVgLQ5Q0NTSNvz5XvbTgEkffsS\nSF9HhJS6tKV8+56S2NUmdJ2UQPKcL9/bdgog6dtfEZLwArD5kGJXm1B2UgDJd758b9spgKRv\nfzVI7oBkD8l35i0gye8MkI4DaebIHFL0si3aTvSQvOfL97adAkj69teCNHdkDcl/Jkggye8M\nkI4ESX7ZljxI8esfqTtRQ/JfeMJ74xRA0re/FKSFI1tI8esf6TsBkjANJO2q5O+D97zz1h0a\nktcRkOp1cC1I1udmnEqCp8pvBMnvCEj1OrgQpJUjS0jxK/KVdAIkYfrAkL6A1CukgCMg1evg\nOpDWjgwhRS9tWdaJClLIEZDqdQAk9fankoijJpCCjoBUr4PLQNo4soIUubSlQSdAEqaBpF2V\nTiBFGTWBFHYEpHodXAfS5lwnFpDihyODTvIhRRwBqV4HV4G0PSAZ7MNJRkDKuTNAOgKk7cm3\nSvfhcSxenAqQYo6AVK+Di0DyHJDKIZUvjj2kqCMg1etAD2ntqG9InrNBFu7Dkgtb7g4p7ghI\n9Tq4BiTfAQlInxunAJK+/UUg+U5PfEJICUdAqtfBJSB5D0iF+7DoUss7Q0o5AlK9Dq4BSXWN\nWCBZLxmQjg3Jf0Aq24dl1yzfF1LSEZDqdXAJSP4LuADpfeMUQNK3B5Ju+x1CSjsCUr0OLgAp\n4KhoHx5lmwBSzp25JqSNoytBGjuEJHAEpHodnB9S4KmGgn3YvVcVSFlLBqRDQwpdK1a5D8/f\n8t0RJIkjINXrAEiZ28+61DKQcu4MkHqGFHR0LkgiR0Cq1wGQ8rafd83y3SDJHAGpXgdnhxR8\nquFUkAb5cxKeG6cAkr796SEFHan24TFdUt5JXg/fAaTDQto6ApJVJ3k9/Pl+YAckIGlXRbQP\nRhxp9uH1yU76gDRkPLnnu3EKIOnbAykjvzlpEJCylgxIQPqJPiENsrLg1tx8A0nf/uSQIo7y\n9+HtWeyARBTGv4Ew7aRsH3vGD0jZ+7DnbJA9QBpkZeGtufnmiKRvf+4jkiUk31lVgZS1ZEAC\nUreQBuFAwmVuvoGkb39uSDFHmfuw9zTf7SEN0oGEy9x8A0nfXgnJ46hDSNEDUt4+7D9dPpCy\nlgxIQOoU0ufNqkACknZVdoUUuH5La0jTm76BBCTtqgj2waijE0ByH54AEpC0q5LeB+MHpJx9\nOHRBMSBlLRmQgKTbRF1Is0/zAQlI2lXZEVLwCpdNIc0/FQskIGlXJb0Pxh0B6XPjFEDSt9dB\n8jnqDlLigCTfh8OXXG4JaXGaBiABSbsqF4e0PN0JkICkXZXdIIUdASlvyYB0REgpR9J9OOKo\nIaTV+beABCTtqgApayDhMjffQNK3Py2kyAntRO0/+ZijdpDWJ4QEEpC0q5KC9LDZh7uEtDmx\nKpCApF2V+ND/HpBM9uGoIyDlLRmQVlVeR51Bepjsw3FHrSBtz/QNpEtCuvluu902yYKhA0m8\nNSBZdNAC0s0D6fYhdDOB9P2UncE+nHDUCJLn0hNAuiCk2/ug8zkG3YCUlwdSfuMzQtrQmf/0\nUfbPd6iX8/5QN53HaLIV66h3Gkcg6ds3h3S7/RyZ1pDSqxIb+s+LseUHg9QBqc0RyXdRMY5I\nF4Z0ez+2W7CyebLhIblryXzSURNI3ovzAenCkDY/3Wa6iiDdgZTRG5AsOmj+0G520+y5hx4g\npR21gOS/WiyQrgvpeVs8DW74OtL77aqnhBS46jKQLgnJZFVqQxoFU7M7pNDVy4F0REh+R0DS\nVADJKA0k7aoEh/75IFLZPjxKpmZvSCFHQAKSelUuCCnoCEhAUq9KaOjTJ2OL9uFRNDVAyloy\nIAFJsYnyQazyYUdAApJ6VapCGgXtRSWGkCKOgAQk9aoEhu7OeQIkWZmbbyDp2wPJGx1CijkC\nEpDUq1IT0ihpLyoxgxR1BCQgqVclMPRHIp9q/xP9QYo7AtIRIQUc9QHpfk5ICUdAApJ6VSpC\nGkXtRSVAko8SSEBSV8jyKUdAApJ6VbxDn5/wW70Pj7L2ohITSElHQAKSelWuAyntCEhAUq/K\nZSAJHAEJSOpV8Q19cSkX7T48JvIZXVhAkjgCEpDUqwKkrIGEy9x8A0nfHkib6AuSyBGQgKRe\nFd/QH4l8qv13jIl8ThflkGSOgHRASCFHHUC6nw7SUCJEWObmG0j69kBaB5CqLRmQjgHpbvHQ\nbkzkBZsoH8QnhiIhwjI330DStz8VpEc8n2r/Ez1BGsqECMvcfANJ3/5EkNbXMQeSrMzNN5D0\n7c8Dae1Itw+PiXxeF2WQBtkgZAMJl7n5BpK+PZCW0RGkQTiI0jI330DStz8NpI2jg0MaBukg\nSsvcfANJ3/48kNaOVPvwmMhndqGHNCTy2QMJl7n5BpK+PZAW0QukIZHPH0i4zM03kPTtsyEF\nHTWGtHF0ZEhDIq8YSLjMzTeQ9O3PAml7QNLsw2Min9sFkHJGCSQgqSu8+SGR1wwkXObmG0j6\n9kCaxZjIZ3cBpJxRAqkDSFtH+fvwmMjnd6GDNCTyqoGEy9x8A0nfHkhTrC++DCTrJQPSFSBt\nLmLeCtKQyOsGEi5z8w0kfXsgvWPjqBGkYQCSJn00SGFHx4a0ddQC0kqRbBClZW6+gaRvfxJI\nniftDgjJc4IGIAnTQNKuiikkj6P9IflOdAIkYRpI2lU5HSTvCYOAJEwDSbsqi6F7HOXswz5H\ne0Pyn3gLSMI0kLSrcjJIgRPYAUmYBpJ2VQwheR3tCyl0IkggCdNA0q7KqSAFT6jaGtLtb7y+\nPRPfgCSIqSriqCUk33MNckh+R3tCCp+YuDmk6est/g1IkgCStkQ0iMgJvhtDurlvQCrc/KIK\nSJklgkFs3s2QOYjSsiik9yM7CaR/vqNswa8T/6bCtDfxXuFzJIYUcLQTpCij9pCeSUEckYSb\nX1R1ekQ6LqTUZVta/40EJGF7ILWENCSvNgEkYRpIrSGFHO0ASXBubx7aCdNAuiykQXJu79ZH\nJMELSLyOJNv8vCrmqCEk75N2nUMSnpK4NSTTJQPSiSEFHdWE5D7ABySjNJC0q3JcSEPG6baA\nJEwDSbsqs6F7HfUKKe+cDEASpoGkXRUbSGFHdSCtX38FklEaSNpVOR6kYXtuEyBZpYGkXZVj\nQfIhkmwBSMI0kLSrYgIp4sgSUvgNdUAySh8KUtRRO0j+J+36gRR7XyqQjNJA0q6KBaSYIytI\n8bd3A8koDSTtqhwBUugvI/kWgCRMA0m7Km7ofkeCfTTqqBTSC1EpFCAJ00DSrkrHkAZ3JAKS\nfJRAAtIUw+rRHJDkowRSW0iBP5HS+2jcUT6kGi+4AkmYPhKkuKNrQ6r1giuQhGkgaVelGFLC\nUQ6kei+4AkmYBpJ2VaahBxztCKniC65AEqaBpF2VfiCVnJcOSEZpIGlX5TP00CO71F0bDfbh\n75K671wAkjANJO2qdAKp8jsXgCRMA0m7Ks0hDevXjDQbAZJRGkjaVfkMPeSoNiTJybSAlDPK\nq0BKOGoEKXhASty1sXAfHtIlkgogGaWBpF0VIBmVufkGkr49kBLbD4Ts9I5AyhklkFpCCjqq\nBWnIeG83kHJGCaQDQhq1+3DWWemAlDNKIDWEFH5kVwfSkC7JqgCSURpI2lVpAinz9I5Ayhkl\nkC4Daf3yK5CylgxI31UpR20ghR1F79qYyHvb539sD0g5owTSJSD53g0EpKwlA1K3kCKP7Iwh\nqT7/CqScUQLpApD8b04FUtaSAelskEbJXZ/nA2/yBlLWkgGpW0gRR5aQQh+WAFLWkgGpV0ix\nA5IhJPWpTYCUM0ognRtS5MN7QMpaMiA9BY4OBGkU3fVXPvoZWCBlLRmQeoUUc2QDKf5RciBl\nLRmQLgup8NQmQMoZJZBaQYo+sgvftVF211PXCBNsAkg5owTSSSGlGAEpc8mAdElIaUdAylsy\nIHUKKeooeNfGRP4dg2BqgJS1ZEC6IKRBMjVAyloyID0FjvaHFH9kByRhmZtvIOnbA8kfguso\npzYhqgCSURpI2lXRQhoT+Z+QnY8YSHlLBqQ+IcUdlUASnkYVSHlLBqQuISUOSAWQpKdRBVLe\nkgHpRJDGRP7P9AISkKyXDEhAyukipwJIRumDQBI42h1SwpEa0pDIJ7vIqQCSURpI2lWpBWlI\n5NNd5FQAySgNJO2qpB7Z+e/amMgDqeKSAelCkIZEPt1FVgWQjNJA0q4KkIzK3HwDSd/+uJAe\nmn1wTOSBVBglo7wApH8vA2lI5NNd5FUAySgNJOWq3IFkVObmG0j69teCNCbyQCqNklEC6TyQ\nhkQ+3UVmBZCM0kBSrspDsw8CyXfjFEDStz8qpDuQrMrcfANJ3160Al8ngTQm8ssTBwHJdsmA\ndAlIw0/E2wu6yK0AklEaSLpVsYakukAskHKWDEg9Qnoo9sExnPedDBJItksGpA4h3W0hKa+0\nDKSMJaSekfYAABflSURBVEuPEkhAUlcAySh9BEhfZ4ekvWQ5kDKWLD1KIB0D0hjKqy9ZDiQi\nJ/7NiJ2G9FC0GQO3s/t8giOSvv0xj0g/H+qzOiKFLt/CEclyyQSjBNKhIQUvgwQkyyUTjBJI\nh4C0dvTOhy8nBiTLJROM8uyQvoCkLwGSfJRA2h3SQzJ0EaTI9S2BZLlkglECaW9IdzNIsevE\nAslwySSjBNIRIG0cAelz4xRA0re/NqTohcuBZLhkklGeHNJk5HyQoo6AZLlkklECaW9ID9HQ\nk5DijoBkuWSSUQJpZ0h3BaStIyB9bpwCSPr2F4aUcAQkwyUTjRJIh4Q0GOzDQBIumWiU54bk\njABJUQIk+SiB1D8kjyOLfRhIwiUTjRJIO0N6yIYOJFmZm28g6dsfENLdAtJgsg8DSbZkslEC\nqXtIvgMSkD43TgEkffvU5mdGzgRpyGuvLwGSfJRAOhykIbO9vgRI8lECaV9In4swA8mmzM03\nkPTtjwfpng/J6whInxunAJK+/RUhDbntC0qAJB/lmSHNjZwF0rDJp9oXlABJPkog7Qnprvgb\nCUixMjffQNK3vwIkvyMgfW6cAkj69keD5BwpIQ3bfKp9SQmQ5KMEEpDUFUAySgMpa1Xuf/Ih\nBRwB6XPjFEDSt4+nF0b6gPRw247fMy+kwZNPtS8qAZJ8lEDaDdL8gKSBlHXVciBZLFnGKIG0\nI6THbNvxewYkYZmbbyDp2x8K0uKAJN0HQ46A9LlxCiDp2x8K0sJRPqTBm0+1LysBknyU54W0\nNAIkRQmQ5KME0m6QHottx+/ZBtL6PHZAet84BZD07U8PKXhAAtLnximApG9/KEiP5bbj92wN\naXNiVSC9b5wCSPr2h4KUdc+AJCxz8w0kfftYemXk2JC2Z/oG0vvGKYCkb392SOEDEpA+N04B\nJH37q0DyXHoCSO8bpwCSvj2Q1NsXlQBJPkog9Q/Jdy0kIL1vnAJI+vaR9NrIgSF5rykGpPeN\nUwBJ3/7kkCIHJCB9bpwCSPr2l4Dkv8glkN43TgEkfXsgqbcvKgGSfJQnhbQxclhIgasuA+l9\n4xRA0rcHknr7ohIgyUcJpL4hBRwB6XPjFEDStz83pNgBCUifG6cAkr59ML01clBIIUdA+tw4\nBZD07YGk3r6oBEjyUQIJSOoKIBmlgaRdFSGkoCMgfW6cAkj69qG0xwiQFCVAko8SSL1CijoC\n0ufGKYCkbw8kdV5UAiT5KIEEpGqdAEmY7hSSz8gRIUUcAelz4xRA0rcHkjovKgGSfJRAAlK1\nToAkTANJuyrpfTD+JxKQPjdOASR9e3/aa+SAkGKOgPS5cQog6dsDSZ0XlQBJPkogAalaJ0AS\npoGkXRUgGZW5+QaSvv2pIUUdAelz4xRA0rf3pv1GjgYpcUAC0ufGKYCkbw8kdV5UAiT5KIEE\npGqdAEmYBpJ2VdKQ4o6A9LlxCiDp2xtD+r3efL1VAZJRmZtvIOnb+9KBg83BII1PIInK3Hx7\nIN1ut/e32+Kn7TcgbQJIoryo5OCQbrP/p395vwFpG3pIv3uClHAEpM+NEUhPhwVI2elTQEo9\nZwek6UYBpPcjuyikf76jbMFPFv+q4z//MR1Iyc4DJGmZm28vpJQgjkihdODPH8ER6TdHJOtO\n+oD0BNJVIf11tMM+fAFIt9k/gJSVBpIsLyo5OqT003VACqXVkH73BGnYYx8+PaSb4AUkXkfy\np/0Hm4NB+v4LCUiyshgk2yUD0vEgDbvsw0DKWjIgiSD9B0j2nQBJmAaSdlVi9+znXQ1AkpW5\n+QaSvj2Q1HlRCZDkozwXJK8RCaTfHUEaBPccSJ8bpwCSvj2Q1HlRCZDkowQSkKp1AiRh+jSQ\nfncEaZDccyB9bpwCSPr267RfCZC0JUCSjxJIQKrWCZCE6bNA+t0RpGGU3HMgfW6cAkj69kBS\n50UlQJKP8kyQAkyApC0BknyUQPpx1BEk0T0H0ufGKYCkb39CSO8DEpCEZW6+gaRvDyR1XlQC\nJPkoTwQp5CQF6TeQKnUCJGEaSNpVCd2z4Q+QssrcfANJ394E0m8g1eoESMJ0V5CCUg4FaZTd\ncyB9bpwCSPr2p4M0HZCAJCxz8w0kfft5OiwlDuk3kKp1AiRhGkjaVQGSUZmbbyDp2xtA+t0T\npOEPkDLL3HwDSd9+lo5YAZK2BEjyUV4c0u/OII3RfKp9Rl5UAiT5KE8CKXbQOQyk2QEJSMIy\nN99A0rcHkjovKgGSfJTngBRzFIP0G0g1OwGSMA0k7ar47tncEZCEZW6+gaRvDyR1XlQCJPko\nTwEp6igC6XdnkMZoPmdmgGS+ZEA6CKSFIyAJy9x8A0nf/p2OOzoCpOE7gKQoc/MNJH37Qki/\n+4H0/WUM57NnBkjmSwYkIGlLgCQf5QkgJRwdANLWEZCEZW6+gaRvXwbpN5AqdwIkYboLSClH\nB4E0RvL5MwMk8yUDUgDSbyCVVgDJKN0DpKSjY0AaY/n8mQGS+ZIByQ/pN5CKK4BklO4AUtpR\n/5A8joAkLHPzDSR9+wJIv4EEpKwlOzckgaMjQNo4ApKwzM03kPTt9ZDWjoBUoxMgCdPNIUkc\nWUO6+W673WbfgCQfRGkZkCw6EFyv3A9p40gO6eaBdHv9//6WC8n3JxKQhGVAsuhAC2nrSAzp\n9qbyOfjcZpCeTyDlDqK0DEgGHQgus2wOaU3HC+mf7xAv3/Ac1UtPTAEkdVYLyeNICel2+zky\nOUiav5F8fyJxRBKWAam8A8HVYb2QfI6yId0+zy/MWAEpfxClZUAq70AJyetIc0Ra/rS8GUjC\nQZSWAam4A9+Dtl0h3RY3LW/JgOR9rgFIwjIglXbge9AmgeR3lP060uIlo/dP0+M9IIkHUVoG\npNIOmkEyWZUFJI8jIAnL3HwDSZX1PWiTQAo4AlKNToAkTLeD5DvWACkjLyoBknyUF4MUcgSk\nGp0ASZhuBsl3rDkoJP9zDUASlrn5BlJ+1vugTQIp6AhINToBkjDdCJL3WAOkrLyoBEjyUV4K\nUthRS0g+R0ASlrn5BlJ2Vgsp4ghIjQZRWubmG0i5We+DtqNCCjyyA5KwzM03kHKzWkgxR0Bq\nNIjSMjffQMrM+o41EkhRR0BqNIjSMjffQMrMKiHFHQGp0SBKy9x8AykzCySLvKgESPJRHg6S\n50GbBFLCUUNIXkdAEpa5+QZSXlYHKeWoFaTQAQlIwjI330DKynoetAkgJR0BqdEgSsvcfAMp\nI+t70CaAlHYEpEaDKC1z820A6Srxrzb+IwzT0Yr2CiAVlrn55ogkzfr/+hEckQQHJI5IjQZR\nWubmG0jCrP+vn2NDCjoCkrDMzTeQZFn/Xz+S+A+QlCVAko/yIJACxxogafOiEiDJR3kMSAEi\nIki/gaQtAZJ8lIeAFDICJHVeVAIk+SiPACloRALpd9+QAo6AJCxz8w2kVDaMJAFpbqRLSOED\nEpCEZW6+gRTPxqQcH1LIEZCEZW6+gRSJhJR4emEESIoSIMlH2TWk1CEnml4a6RNS0BGQhGVu\nvoEUjORjt1h6ZaRHSJEDEpCEZW6+gRSI5CEnml4b6RJS2BGQhGVuvoHkjfQhJ5reGAGSogRI\n8lH2CUlwyImmt0aApCgBknyUXUISHHKiaY+RDiHFHAFJWObmG0jrkBxyYmmvESApSoAkH2V3\nkESHnFjabwRIihIgyUfZFSThISeaDhjpD1LsyW8gScvcfAPpE9JDTiwdNNIhpJgjIAnL3HwD\n6Sfkh5xgOmoESIoSIMlH2QOknENOMJ0w0h2k+CM7IAnL3HxfHpL8kBNOp430BynqCEjCMjff\nF4cUpyKEJDACJEUJkOSjbAhJQEUGSWIESIoSIMlH2QiSkIoEksxIb5ASjoAkLHPzfTlIOVQS\nkEREgKQuAZJ8lPtCyqWS+AgskNR5UQmQ5KPcBZKaSuIjsEBS50UlQJKPsiYkyfmy1JDERLqE\nlHIEJGGZm+/zQRIzKYCUQQRI6hIgyUdpCCmbiRZSHpE+IdXeR4FkvWS7QNIx0UDKJ9IjpBFI\nRmVuvk8AScskF5KOSIeQRo5IVmVuvg8PSc8kD5KWSH+QRh7amZW5+T4ypKQTM0gFRLqD9O2o\n+j4KJMslE4xSnRY5MYJURARI6hIgyUepTcucmEAqJNIbpO8nvoFkVebm+5iQhE5KISUMAEmd\nF5UAST5KXVrqpASSwACQ1HlRCZDko1SlxU70kEQGjgjp5QhIRmVuvoEUZASkenlRCZDko9Sk\n5U4UkHIMHBDSz3vsgGRW5uYbSEFGQKqXF5UAST5KRTrDSSakXANAUudFJUCSj7IjSPkGjgfp\n9ekJIJmVufk+HKQcJ3JIKgPGkH4FF8lsVT4HJCAZlbn5BlKQ0c6QftWHNB2QgGRU5ub7aJCy\nnMggqQ2YQvpVHdL4/lgskOzK3HxfHlKBAUNI/+9XdUjTp8uBZFfm5vtAkPKdpCHF9/LdIP2q\nD8mdpQFIdmVuvg8DSeMkVZDay/eC9GsHSC6AZFfm5vsYkJQHnMR56ZJ7+T6Qvg3tCGkQzDuQ\nhGVuvvuHpHSSKBDt5btA+gWkdoMoLXPz3TskpZNEgXAv3wHSr19AajiI0jI3331DKjrHfbBA\nvJdXh/TrF5CaDqK0zM13z5AKLxYhuex4U0i/fgGp8SBKy9x8dwtJQEUBKc9CVUi/fjWBNEiW\nBUjCMjffnUISUcmGlGuhIqRfv4BUWgGkVFpIJQeSykI1SL/WAaQ2gygtc/PdISQxFTkkpYVK\nkDaMgNRqEKVlbr57g5RDRQpJbaEGJI8iIDUbRGmZm+/OIGVRkUDK28vzpGgg+R3tB2kQLQuQ\nhGVuvvuClEclAUmyp+8NKeAISI0GUVrm5rsnSLlUkm+l6w1SiBGQWg2itMzNdz+Q8o85ybfS\ndQQpbAhIDQdRWubmuxNImmNO6sqUHUFKMAJSq0GUlrn57gKS5pjjzWbv6btASjICUqtBlJa5\n+e4AUvYxx59V7enVIb2N9AJpkC0LkIRlbr7bQ8o75oSyyj29JqS5ESApSoAkH2X8A0dlV6Zs\nCWltBEiKEiDJR5l4KajognrtIG2NAElRAiTRKAVSyi6o1wBS0AiQFCVASo5SKKXsgno7Q4oa\n6QTSMG07umhAkpa5+W4BSXzIKbsO2D6QZEaApCgBUqj7nEPONp3vpA6kPCJAUpdcANLtdsuH\nJD/kLNIFTkogCQwcDtLgtq3ZawzzopLzQ7q9/xdCkh5ytseenAOGah+OV5wL0jDMtq3Zawzz\nopKrQxIeciYL6p0wuYsCaRbDYtuavcYwLyq5EKR/vqNswYk6sV7yYbkDFO5cQHrfOMUeD+1q\npZMzULpWZYPPqfIV2ULKGxSQZGVAsugASOq8qARI8lECKVwEpPqDKC0DkkUHQFLnRSXnh6R7\nHck8DSQgFQ6itKwUknzJgAQkbQmQ5KMEUrio4qoAyajMzTeQ9O2BpM6LSoAkHyWQwkUVVwVI\nRmVuvoGkbw8kdV5UAiT5KIEULqq4KkAyKnPzDSR9eyCp86ISIMlHCaRwUcVVAZJRmZtvIOnb\nA0mdF5UAST5KIIWLKq4KkIzK3HwDSd8eSOq8qARI8lECKVxUcVWAZFTm5htI+vZAUudFJUCS\njxJI4aKKqwIkozI330DStweSOi8qAZJ8lEAKF1VcFSAZlbn5BpK+PZDUeVEJkOSjBFK4qOKq\nAMmozM03kPTtgaTOi0qAJB8lkMJFFVcFSEZlbr6BpG8PJHVeVAIk+SiBFC6quCpAMipz8w0k\nfXsgqfOiEiDJRwmkcFHFVQGSUZmbbyDp2wNJnReVAEk+SiCFi8pXhtgvDCCVRNHFlQyuzNS6\n/wqbMonS8Zjcny4GId0akJr2X2FTJtHFPtzFIKRbA1LT/itsyiS62Ie7GIR0a0Bq2n+FTZlE\nF/twF4OQbq0xJII4RwCJIAwCSARhEEAiCIMAEkEYBJAIwiCODOmWLjl1/x1HF1Oz6yCaQiq8\np7fSmWrdv9uS1YaMong8FlPTxSDcxhL5tkekonvaeq32XKa9o/RXzHkGId1cY0gFd/b2075s\ntlr3bzKQGlE2HqOp6WIQbnvxTbV+aKe/o3/v2Ou/4/ZvM5AKUTgem6npYhDi0bSD9H0vn9q5\nev26+fzrkP3bDKRCFI7HZmq6GETOaJpBupXd0+l+FUx10/6tBmIexeOxmJouBpE1mlaQXuPS\n39XpkK08drfu32wg1lE+HoOp6WIQeaNpCkl/L2/TH5PaiW7cv9VAzKN4PBZT08Ug8kbT8qHd\nU/37ZjpyF69Vs/6NBmIfpeMxmZouBpE1mnaQyh/NlDVu3L/lQEzDZDzFx+keBuE2JBhN02ft\nSu9ruaSG/VsOxDRMxmMiqfUg3IbSo2n4OtLN5hHsYfufopuBvKOL8XQxiCnSoznym1bV0cNx\nyHpT54lujkNZW7sipMK3ntgtVEe/cvuJ4tcTTCdVvLWdIZU/Z11+xMeRJ0qn1uzJ5oM62v2I\ndJu9e2Pv1m4r7VrX2lRxlE6tzdI8j/rIbv+HdoXv/Ch+WvT2ft9Ui9brTfV0SCqeWptnrAvn\n13B9nnlLtP/fSK/5LnkltPAl76d+rstabzfVl6SfL4UvcRt89KH4dVirSc1aor3/Rnob193X\nstafl7pvurkua73Z2vv3dy+SCqe2uH35/NquzzN3ifaD9Jnmm+oxTVnr1yZu73lWHQnKWnu2\n99qowZZKo3RqDZbmWT6/1uvzzFyi3SE1PB7c3FZ2b73Y0PStB0e9HApK59dsfZ6qJdoN0uw4\nqXSkb+228lpw5RGtqLXbzOc3ZidPNpROrc3SPMvn12h9nrol2gvSZ2BPvaPy91+9J1r/J1ZB\n6+V23ntfB1E6tUZL8yyfX6v1eaqWaCdIn4ebuofRZa3fjd9fdY+/S1pvtvb8/KrrQFLp1JYv\nzbN8fm3X56laon0gvcak/TVc1vq1Bfc7U+G4qLVne8/PHWouqXRqy5fmWT6/1uvz1CzRbg/t\nio65Bu8Les13k9abrXXxt9E7SqfW5n1BhfNruz5PzRLt92RD4XIV9/8s2YPLWq831pGj8tGY\nvRhQ+tn0HU9i54kdn/7uQFLJU+clrX0b6ya6kVT2hGxZe+/2cmLHdzZ0IalR69W2kLTdSOP2\n6811+9Du2YGkxv3PtmW3KYvoQ1IPg5htLrP+ih/sIwjzABJBGASQCMIggEQQBgEkgjAIIBGE\nQQCJIAwCSARhEEAiCIMAEkEYBJAIwiCARBAGASSCMAggEYRBAIkgDAJIBGEQQCIIgwASQRgE\nkAjCIIBEEAYBJIIwCCARhEEAiSAMAkgEYRBAIgiDABJBGASQCMIggEQQBgEkgjAIIBGEQbSE\n9N8pmvTazYZ2idqTffXFbArp/16x89z/7yvK5/5/XgGkPbaf6LX5hoCk3xCQdtx+otfmG+oN\n0vA3QvXD5h+Ldtty75b+QhpWkGKdhsfhgeQdRR9/h/p29GF+x9f/kM/oTya0/dB4jBbzv/8d\nMjoNj8M/ek9xeAbahRfSUzUmT7PQVnyQ8jqNQNpup2dIi6Gt9uyMGX0GIcUbhTcmX0wPpLxO\nI5CyFrNXSMPry+fXy8+34fNbYvrH9Fvjczc+zV5ffr4ttvLd698fApBmVe/+3pt4/7zoMgBp\nsaFh+t/7C27P+O/9HR5In/mapvmZNaM/mf8+3rH7Yo5/o3wxXxse1IvZHSQ3u7P/trdss4ki\n91/wod2sav3d02UEkm/QTRU9o0ek7Yif050UzegzdESqv5jBh3a5ixk8ngoXsztI7zsw/daa\nfjaY+9dWvA/tFp0u12D2C1QKafZra9Z7rXkUhQjS9ogkmtEgpPqL6X1op1nMMCTZYnYIyfs7\nIPbfolm6NPg30qzTYfF9O6af4Qf/RvKOvu1ciyBpZzQCqfZiBv9Gyl3M8K8B3+i3i9kppM0v\nAP8vMfdYdf7AOTjxP0XRv5GGaRtutqZfbauHx5Fn7T4P7H++vlex3yPSdI9nv8VzZvT1N1Lk\nyYa6ixnrVL6Y3gem7ntyMZtC8q5tTgyKO1DcqfmGdonyya69/WMvZttfk8XR+Nc8YRmHXswj\nj50gugkgEYRBAIkgDAJIBGEQQCIIgwASQRgEkAjCIIBEEAYBJIIwCCARhEEAiSAMAkgEYRBA\nIgiDABJBGASQCMIggEQQBgEkgjAIIBGEQfx/M+vkTdBlGo4AAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
" # area plot \n",
"plot1 <- world.long %>% filter(type != 'Total Confirmed') %>%\n",
" ggplot(aes(x=date, y=count)) +\n",
" geom_area(aes(fill=type), alpha=0.5) + \n",
" labs(title=paste0('Cases Worldwide - ', max.date.txt)) +\n",
" scale_fill_manual(values=c('red', 'green', 'black')) +\n",
" theme(legend.title=element_blank(), legend.position='bottom',\n",
" plot.title = element_text(size=8),\n",
" axis.title.x=element_blank(),\n",
" axis.title.y=element_blank(),\n",
" legend.key.size=unit(0.2, 'cm'),\n",
" legend.text=element_text(size=6),\n",
" axis.text=element_text(size=7),\n",
" axis.text.x=element_text(angle=45, hjust=1))\n",
"\n",
"\n",
"plot2 <- world.long %>%\n",
" ggplot(aes(x=date,y=count)) +\n",
" geom_line(aes(color=type)) + \n",
" labs(title = paste0('Cases Worldwide - (log scale) - ', max.date.txt)) +\n",
" scale_color_manual(values=c('purple', 'red', 'green', 'black')) +\n",
" theme(legend.title=element_blank(), legend.position='bottom',\n",
" plot.title = element_text(size =8),\n",
" axis.title.x=element_blank(),\n",
" axis.title.y = element_blank(),\n",
" legend.key.size = unit(0.2, 'cm'),\n",
" legend.text = element_text(size =6),\n",
" axis.text = element_text(size = 7),\n",
" axis.text.x =element_text(angle = 45, hjust = 1)) + \n",
" scale_y_continuous(trans = 'log10')\n",
"\n",
"plot2\n",
"grid.arrange(plot1, plot2, ncol=2)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"List of 1\n",
" $ axis.text.x:List of 11\n",
" ..$ family : NULL\n",
" ..$ face : NULL\n",
" ..$ colour : NULL\n",
" ..$ size : NULL\n",
" ..$ hjust : num 1\n",
" ..$ vjust : NULL\n",
" ..$ angle : num 45\n",
" ..$ lineheight : NULL\n",
" ..$ margin : NULL\n",
" ..$ debug : NULL\n",
" ..$ inherit.blank: logi FALSE\n",
" ..- attr(*, \"class\")= chr [1:2] \"element_text\" \"element\"\n",
" - attr(*, \"class\")= chr [1:2] \"theme\" \"gg\"\n",
" - attr(*, \"complete\")= logi FALSE\n",
" - attr(*, \"validate\")= logi TRUE"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"`geom_smooth()` using method = 'loess' and formula 'y ~ x'\n",
"`geom_smooth()` using method = 'loess' and formula 'y ~ x'\n",
"Warning message:\n",
"\"Removed 1 rows containing non-finite values (stat_smooth).\"Warning message:\n",
"\"Removed 1 rows containing missing values (geom_point).\""
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAQlBMVEUAAAAzMzMzZv89PT1N\nTU1oaGh8fHyMjIyampqnp6eysrK9vb3Hx8fKysrQ0NDW1tbZ2dnh4eHp6enr6+vw8PD///9w\n3A53AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2djXajug5GuS2dac8M0/lp3v9V\nb0IAG2ODbMsmga21zqQHyRbWxw7GkKS5YBiWbc3eO4BhRzBAwjAFAyQMUzBAwjAFAyQMUzBA\nwjAFAyQMUzBAwjAFAyQMUzBAwjAFKwPSz+9N03z/ldT26z2hr6/3pnm7NNGjmbfI2e2nsuZu\n7fsfj+vilsW4ftpBItMoacUjIN1KgPSnHYT6ltJ6PjJhX9/7iLwy5u32U1kz2cfSdQmD1NpB\nAtMoacUjIMcKgPTn+vbx+/r6+1vzPaH5bGTSvppm+d4amSxzt5/KhmH//dE0/634F1ub9zX/\nwjRKWvEIyLICIL01P4a/vjUJ5/TZyKR9pZbDape5209l07Cvh+nXmt/Z+n04WoXl1ihpxSMg\ny/RB+mXeOf7cZg7Dnt5erqq9Xb3DS/8u03z7NXg/2ubt1zDrCPV1fXlvx6m906aZpiVDkst/\nd++P68tdDJPv2vW3pv3vspbq4+0a/fu+5f12QfHb7cTe/FRmhv1xPyWZsY41vF5w9Db9YW8d\n2o+l+H0/U/1u+h7em6EiGiWteATkmT5I3503jhlI32+z8uHl8tNM06/D6//+NQfJ7eta12aI\nW7QxZRyS/Ndv/f3ev9zqaOW7HkA3e19J1ZpMv62sVif25ucyM+w//YFqjXW8RvoYhvXTTP6u\nW3/czw/39qYUbf//H/fSTldSGiWteATkmT5IrTNZmIH07esyvfzp35z+9Gfs69vQ78vX99sF\npT0yt6/rTOS/r8vXtQZ/Z22GRkMZhyTtr1u12vvL2zzfn34F6ldrkrmp/usPoP/63t/65aqf\nbifW5iczq8a3P+2xjiD9HYb17VZqE/rWfo1BVin+64/rtkfo10SeRkkrHgF5pg+Su2czkIbZ\nQ//yca/R1+098f4O8zW9qQT6Gt7zrrOHj1mbeRmHJIN3nDrO8n3c31m/2imBm+rtHu0uYs13\nWlyUBzMHpMVYb/98Hwr4Ngv908/i+iCrFH9vW6/o3Y7u94k8jZJWPALyrDJI9pa3ZjRfkLev\nt0Gk/u3S7m1WxmHz1+UyC7LzDZpej5ZQqqv9+fXft37z9+uk/OffxU5bm5/MHJAu1linf+6T\nPmtmd3e939Yb+r/sUnzrz2t9sFmm1ihpxSMgz/RBelub2s23bIIU6GvZm6+My+yLfP0B4E91\nu0Idgi9/+z/761W7E2vzk5kN0m06Zo3V/NMv0Vkzu/vWr/ZtCjKl+Hl9239rLtej+9d011al\npBWPgDzTB+ndvjz8uwqStRt+kAJ9pZZxkc/a5qb6cZ1pf/z8OwT86i9Y/3PfIafNT2ZmFL9v\n5x17rOaf2ynJntkNrW7rDe7s7Po/77cJ0/fm690c+RolrXgE5Jk+SNaC5d/2m28gw0tr3UIL\njNbtK+rE7r548n2ZZMtUv63AS78w2847sTY/mZlRfdxOIPZYrRpez0b2zG5s9dbeyzYrxfWS\n4wrY9b/GPOGlUdKKR0Ce6YN03d3h5H49T/8ap6q/liC932v+p/HS5u3rY5Dp3blBJSqjnW+4\ns/jDSrbY7cu426O5nVibn8ymXf7TH7L2WK0a/mo+7Jnd2OrPsGY8K8Xv5tu1pH+aN/sMolHS\nikdAlhU4CH7fH+r4us6Ib+8m35rvX8My43xof/oF/T9WjQeQ/gb7uk4LPu6Ln3/iy2jn+9G0\nP++3FUKp+jvqw+rofVH247bd7sTa/GQ2DPv2iNDtcsQeq13Dt3a2tD8W670Zpn6mFP2FfB9i\nn541SlrxCMiyEu+m4z2zeznu99g+liCNcR+XmedtNrZ5X87tONObpIx2vsv9Tt5/4VQ/xv/7\nPd0mbP/OO7E3P5eZq+6+GPZY7Rr+ml//jcX6aqdzy9TFcHvo+/wpWI2SVjwCcqzItOTrtsbZ\nvA8n+d9v46MYDkiXvx/jsxv228bb7F1t3pfzgMj0Iiqjle/6XrR8QGSe6sct0e/7HP13/+DK\nX2enZ5ufyoaD8e1juGawxmrX8Gs2OzDF+jme0ax6fvXM/Wjm1dAoacUjIMOeb36PVbMfT/jQ\nxl4GSFjIrhcTT/hA7k4GSJjfzOUPJjBAwvz29pTPbOxmgIRhCgZIGKZggIRhCgZIGKZggIRh\nCgZIGKZggIRhCgZIGKZggIRhCqYO0r+wrfmyvOtNc/1ZqTNitJWRSJQz2Bzvpr9k6owYU1RA\nKps6I0ZbGYlEgBQXY4oKSGVTZ8RoKyORCJDiYkxRAals6owYbWUkEgFSXIwpKiCVTZ0Ro62M\nRCJAiosxRQWksqkzYrSVkUgESHExpqiAVDZ1Roy2MhKJACkuxhQVkMqmzojRVkYiESDFxZii\nAlLZ1Bkx2spIJAKkuBhTVEAqmzojRlsZiUSAFBdjigpIZVNnxGgrI5EIkOJiTFEBqWzqjBht\nZSQSAVJcjCkqIJVNnRGjrYxEIkCKizFFBaSyqTNitJWRSARIcTGmqIBUNnVGjLYyEokAKS7G\nFBWQyqbOiNFWRiIRIMXFmKICUtnUGTHaykgkAqS4GFNUQCqbOiNGWxmJRIAUF2OKCkhlU2fE\naCsjkQiQ4mJMUQGpbOqMGG1lJBIBUlyMKSoglU2dEaOtjEQiQIqLMUUFpLKpM2K0lZFIBEhx\nMaaogFQ2dUaMtjISiQApLsYUFZDKps6I0VZGIhEgxcWYogJS2dQZMdrKSCQCpLgYU1RAKps6\nI0ZbGaykAVLZ1Bkx2spIJOKMFBdjigpIZVNnxGgrI5EIkOJiTFEBqWzqjBhtZSQSAVJcjCkq\nIJVNHRHTNM18UylL3ldAWmyaDJDKppbHNI1DkrYyEokAKS7GFBWQyqYWxzSNS5K2MhKJACku\nxhQVkMqmFscAUrHOAUnqBSQtiQApLsYUFZDKppbHcI20V+qMGFNUQCqbOiKGVbudUmfEmKIC\nUtnUGTHaykgkAqS4GFNUQCqbOiNGWxmJRIAUF2OKCkhlU2fEaCsjkQiQ4mJMUQGpbOqMGG1l\nJBIBUlyMKSoglU2dEaOtjEQiQIqLMUUFpLKpM2K0lZFIBEhxMaaogFQ2dUaMtjISiQApLsYU\nFZDKps6I0VZGIhEgxcWYogJS2dQZMdrKSCQCpLgYU1RAKps6I0ZbGYlEgBQXY4oKSGVTZ8Ro\nKyORCJDWYzp302SAVDZ1Roy2MhKJAGk9BpD2Sp0Ro62MRCJAWo8BpL1SZ8RoKyORCJDWYwBp\nr9QZMdrKSCQCpPUYQNordUaMtjISiQBpPQaQ9kqdEaOtjEQiQFqPAaS9UmfEaCsjkQiQ1mMA\naa/UGTHaykgkAqT1GEDaK3VGjLYyEokAaT0GkPZKnRGjrYxEIkBajwGkvVJnxGgrI5EIkNZj\nXl5e5psmA6SyqTNitJWRSARIqzEdIO2VOiNGWxmJRIC0GgNIOX5Akg0EkGqpBEhRMdrKSCQC\npNUYQMrxA5JsIIBUSyVAiorRVkYiESCtxrgcAVK11Bkx2spIJAKk1RhAyvEDkmwggFRLJUCK\nitFWRiIRIK3GAFKOH5BkAwGkWioBUlSMtjISiQBpNQaQcvyAJBsIINVSCZCiYrSVkUgESGsx\ni9tIgFQtdUaMtjISiQBpLQaQsvy1QAp/1qWeRIC0FgNIWf5aIIUfP6knESCtxVQFCUu1q0p1\nEiUfUGcHacERZ6RqqSNiOCPtlFocc1WoaeabJgOksqkjYgBpp9TimB6kGUmmqIBUNrUw5qYP\nIO2UWhxzB8kmyRQVkMqmlsXc5GkAaafU4hhAyvKXB8nLESDVSi2N+QSkLD8gyQZyFpBmzSYD\npLKpRTGA9EQgzZtNBkhlU8tiAOlZQHKbTQZIZVMLYwAJkOQqAdJaDCDtlVoaA0iAJJUIkFYM\nkABJKhEgrdhVIX6NYq/U8hhA2iu1NAaQAEkqESCFrQMkQJJKBEhhAyRAEksESGEDpKcAaW1F\nqJ5EgBS25edjAaleanEMIBXrHJCkXkDSkgiQwgZIgCSWCJDCBkiAJJYIkMIGSIAklgiQwuZZ\ntAOkaqnFMYBUrHMdjXyr34BULbU4BpCKdQ5IUi8gaUkESEEDJECSSwRIQQMkQJJLBEhBAyRA\nkksESEHzrX4DUrXU0pjVexT1JAKkoAESIMklAqSg+WZ2gFQttTQGkHLcFUDyXiIBUrXU0hhA\nynEDko4XkLQkAqSQAVK2H5BkAwGkWioBUtgAKccNSDpeQNKSCJBCBkjZfkCSDQSQaqkESGED\npBx3JZA8zSYDpLKppTGAlOOuANJVoE9Ps8kAqWxqYcz64yf1JAKkgHWAlO0HJNlAAKmWSoAU\ntDyQ2t7GP4bXi+d1UyJA8lvzelXotVlsN0UFpLKphTEKZ6R2+G98aZev2xIBkteaAaQFSab8\ngFQ2tTAmHyQbFkCKSr0Z00wguSSZ+gNS2dTCGB2QWutvQBKn3owBJBX/U4A0XQpNQHlB+t/N\nNOU+hQ0g3X57PhyjnTT5gAIkt1mMtfY/nJGiUm/H9L857zkhcUaqlloYowPS+BcgRaUWxDT+\ntQZAqpZaFrPx+Mm2tbM/ASkqtSCmf9LOE2PKDkhlUwtimn7i4GkWYa35F5BiUwtiAEnBXxik\nRhek9cWGLYkAyW+ApOAvC1KjCFLwiQaebNgyQNpuegaQtCQCJL8BkoIfkGSDPTpIvhhTVEAq\nm3o7BpAk/p1B6j8eC0gPDZLKqp2WRIDkN0BS8JcGqZdpVaR6EgGS3wBJwQ9IsoEcGKQOkBT8\ngCQbCCDVUgmQAgZIgBSjEiAFDJAAKUYlQAoYID0BSN4YU1RAKptaFANIDw7S/VtWAQmQpBIB\nktcAScMPSLKBAFItlQDJb5vPcdWTCJB81gGShh+QZAMBpFoqAZLfAGnbD0hKwwWkKhIBks8A\nScUPSLKBHBskf4wpKiCVTS2JAaRt/64gDT/WB0iAJJUIkHwGSCp+QJINBJBqqQRIfgOkbT8g\nKQ33wCBtPxBZTyJA8lgHSCp+QJINBJBqqQRIXgMkgR+QlIYLSFUkAiSPDbeRAAmQxBIBkseG\nE1IuSPPvjfY42llEoeECkp4l7ysgLZpNtgmS80sGHsfcWWi4gKRnyfsKSItmk6WANP8xHkDa\nMkDa9J4FpP6PaQLn+VUrkUqA5DPBA5HKlryv5wSp0wJp/kvZlwVIE2H8ZHaK3T5nXteSDzpA\nWjSbbBukgaIZN23Sz8FxRvIZZySJ/wAgDf+05szjXCPZr4AUHQNIEv/OIIViTFHlIDmbAEnU\n9XYMIEn8O4I0npBKg8TUbssAadN7NpDagEP2S7+A5DNAkvifH6TAL2MHHYWGC0h6lryvgLRo\nNhnP2pVNvR0DSBL/fiB1gKTkLwuS5MniehIB0sIAScsPSCInIFVTCZA8Bkgi/74gBWNMUQGp\nbOrNGEAS+fcDaTohARIgiSUCpIUBkpYfkEROQKqmEiAtrGkASeQHJKXhHhOkBpCE/t1A6gBJ\ny18OpDtHTSBGWxmJRIDkGiCp+QFJNtiDgXQV5/ZiVr8BCZDEEgHSaE1zJwmQ1PxFr5FEHxqr\nJxEgDdY0A0lmZgdIjwvSP0AS+gFJabgHBekfIMn8gKQ0XECqIhEgjTZeIwGSmh+QRM6DgfTP\nrDUAko4fkETOo4F0N0DS85cESfaIfj2JAMkxa/UbkABJLBEgOQZIen5AEjmPCZI1swMkQBJL\nBEiOAZKeH5BETkCqphIgLQyQhH5AUhouIFWRCJDm1gGSnh+QRE5AqqYSILkmfES/nkSANDd7\n9RuQAEksESDNDZAU/YAkch4SJHtmB0iAJJYIkOYGSIp+QBI5AamaSoDkGiBJ/YCkNFxAqiIR\nIM2sAyRFPyCJnIBUTSVAckz6iH49iQBpZrPVb0ACJLFEgDQzQNL0A5LIeUSQZjM7QAIksUSA\nNDNA0vQDksh5JJCG7/0GJFU/IImcBwJp/E47QFL1A5LIeRyQpm9Z7QBJ0w9IIudBQVrvxxQV\nkMqmXosRP6JfTyJA+gdIpfyFQDI/6RKI0VZGIhEg3czz20iBfkxRAals6mBMA0gx/qog/fOu\nNQDSI4LUAFKUvy5IgwGSqh+QZIMFpFoqAZIxQIrzA5LScI8GEtdIcX5AUhru4UBi1S7KvxdI\n/8zzQoD0mCD9kz+ij+1jV4WuhNxsOxaQyqZeidkNpOTxnOyM1N9Gmu7OckYCJLlEgGRmcvdL\nJEBS8wOSyHkQkCZsAEnbD0gi5zFAsrgZFu3M/wMSIEklAqQFSKzaafkBSeQ8JEhb/ZiiAlLZ\n1CsxgBTh3+kaaasfU1RAKps6HBPxiH49iQBpvmq31Y8pKiCVTR2OAaQYfz2QjAGSrh+QRM7D\ngeQ8aQdIgCSXCJCMAZKyH5BETkCqphIg2QZIMf59QNqMMUUFpLKpwzGAFOMHJPGAAMltVsqS\nxwNIi2aTAVLZ1MEYRyZAynEDko4XkLQkAiRjgKTsBySRE5CqqQRIlgFSlB+QxAMCJLdZKUse\nz6lAWnAESIAklgiQJhu+sGG9H1NUQCqbOhgDSFH+XUCyPlIR6McUFZDKpg7GAFKUfz+QmpUY\nQKqWOhQT9Yh+PYkAaTJA0vYDksgJSNVUAiRjgBTnP981Eiay/ttwd7Lkg+5sILFqp+rnjCRy\nHhGkzX5MUQGpbOpQDCDF+auD1AGSth+QRM6DgbTkCJAASSwRII0GSOr+AiDNf2Qs0I+2MhKJ\nAGk0QFL364O05AiQAEmuEiDd7f7zsc1qzD9AqpbaGwNI6n5Akg0WkGqpBEh3A6R4f22QPKvf\ngPRoIHGNFO8HJKXhHgqkf4AU6wckpeEeC6TI7wOoJxEgDbb4vmJ/P6aogFQ2dSAGkCL9O4Ak\n6ccUFZDKpg7EAFKkH5DEAwIkt1kpSx4PIC02TQZIZVP7YyKfLK4nESDdzbfWAEiAJJYIkO4G\nSAX8gCRyAlI1lQBpNECK9VcGybf6DUiAJJYIkO4GSAX8gCRyAlI1lQBpNECK9dcHSdSPKSog\nlU3tjwGkWH9dkLxrDYAESGKJAKk3QCrhBySRE5CqqQRIg8U+ol9PIkDqzbvWAEiAJJYIkHoD\npBJ+QBI5AamaSoA0GCBF+6uDJOvHFBWQyqb2xgBStB+QxAMCJHdTKUsez1lA8i/aARIgiSUC\npJsBUhE/IImcBwLJv9YASIAklgiQbgZIRfzqIEV/aKyeRIB0M0Aq4gckkfNYIAn7MUUFpLKp\nfTGAFO8HJPGAAMndVMqSx3MSkAKLdoAESGKJAOkfIJXyA5LIeRyQAmsNgARIYokA6R8glfJr\ngxT/obF6EgHSP0Aq5QckkfNQIEn7MUUFpLKpPTGAlOAHJPGAAMndVMqSx3MOkEKLdoAESGKJ\nAAmQivkBSeQ8DEihtQZAAiSxRIAESMX8gCRyHgkkcT+mqIBUNvUyJuHTl/UkAiRAKuYHJJET\nkKqpBEhXa646NaJ+tJWRSARI4UU7QHokkJoepCVJgJTjBiQdLyBpSQRI4UU7QAIksUSABEjF\n/FwjyQZ7HJDk/ZiiAlLZ1IsYP0eABEhylQDpX9oXa9STCJAAqZgfkETOg4AUXrQDJEASSwRI\ngFTMD0gi50FACi/aARIgiSUCJEAq5gckkfM4IEX0Y4oKSGVTuzFJn77ctPZmw+tl5XVTIkAC\npGL+ZwDJemnDr9sSARIgFfMDksh5DJBWFu0A6fAgtfYrIMWmtmMAqZz/CUAaL5Eulw2Q/ncz\nZcWPY03/SPFnWlvlfQGk9ZhyZ6QVgDgjbdotprmDFFr95ox0eJB6A6TU1ENMM4AU048pPyCV\nTe3EpH36UmSAlJp6iAGk04PE1C4r9RADSIBk/QdI0anHmCtHr4BUzv/4IG0+0cCTDVvWxwDS\natMTgKQm0blBWn1kFZAASS4RIIVPSIAESGKJAAmQivkVQUr89GU9iQAJkIr5AUnkPAJIa0/a\naYDU+rdaS0KitVVAAqRU/yFAar0gTTcn5t5CwwUkPUsez+FBWl20ywapdc9IrfkXkDa6nscA\nUqr/ACBNd8anCdwcJIeyQsMFJD1LHs8ZQIrrxxRVDJL1mIkD0kQYH3bZsqtQe+/CBZDCMSVB\nWjzH1Q7kxD/IdfozUuqnL5UteTyAtNg02RZI5krInHmcayT7FZDWYgAp2f/8IM1OQMM28y8g\nbXQ9iwGkZP/Tg9SbszbnWWwAJEkMICX7q4C0vminCVLrbJytRGyqBEiAlOo/DkjOZ1qsDeIP\nuwASIKX6a4EU2Y8pKs/alU09iwGkZD8giQd0fJCSP31ZTyJAiuvHFBWQyqa2YwAp3f9sIDXD\n//ufU81UCZAAKdX/VCC1jWUFVAKkl8b3i+aBfjJQSZYIkOL6MUW1gflhcfSjgEqAdAUpQBIg\n5bh1QNpY/U6a2hVRCZBuIPlJAqQctxpIsf2YorLYUDa1FTNwBEgp/qcD6aPlGkkztRUDSBn+\nZwPpg8UG3dRWzNrMDpAOBlKbvsqwrRIgBTkCpIOBxGKDcmorJv0bapQteTyAtNg0mQPO9+ar\nnEqAFNVPphBJEgFSXD+mqA5If9tvf4upBEhR/eTpkCbRmUHa4ihyasdig2pqE5Px6UtlSx4P\nIC02TQZIZVObGEDK8T8bSEVVAqSofkIVzn6wOHk8gLTYZFRJFCNFJUCK6sdbXo0Hi5PHA0iL\nTZMxtSub2sTogKTxYHHyeABpsWkyQCqb2sSoT+2SLXk8gLTYZFTxVfrvt/9KqHRqkHI+66Js\nyeMBpMWmyfzvbl9NMknJAwIkd1PIch8sTh4PIC02TRYQg6mdUuopRg+k7AeLk8dzaJA2OUoB\n6WfDdzbopJ5i9EDKfrA4eTyAtNg0WWix4aOASoAU1U+owiw2KKe+xxQBqU3mCJACMXogZT9Y\nnDweQFpsmowbsmVTTzF6IGU/WJw8HkBabJoMkMqmHmOyHtGfG082KKe+xyiD9PXx1jRvH+mT\nh+QBAZK7KWCApJy6j+l0Qfo73KJokycPyQMCJHdTKUseDyAtNk3mgPTe3Obff7817wVUAqSo\nflIVyJHovCBtcxS5ajd/VVUJkKL6CVWYqZ1y6j4GkDabApJcIkCK68dSZV5jpnbKqYeYvOe4\nfJbxYHHyeABpsWkyFhvKph5i9EHKeLA4eTwHBulTGSSWv5VTDzEFQEqffiePB5AWm4waiWKk\nqARIUf1sFDr9weLk8RwYpK2fdAn0Y4oKSGVTDzGaIGU/WJw8nmODtBkTAdKP/k3u9/ufRInW\nVQKkqH5CFc5+sDh5PIC02GRUsSv8rWl6hNr0T1EAkjemxDVSCYkAKa4fU1QbpOus+1f/x++2\n+VlApfOClPn4ibIlj+e4IAkeEIoA6Vvza/jrV/OtgEqAFNVPsMS5K6vJ4zkqSE3zqgqStZ7K\nkw1Kqe8xqiBl3+tLHs9BQbrWUrJolwYS39mgk/oeowpS9tMnyeM5JkjNHaT1oEA/pqjzqd34\nHveXR4SUUt9jVEHKfh4yeTyAtNhkVLEK/GPC5326WtJUCZCi+glVGJB0U+uDdGmb77+vL7+/\nN2+JGgGSL+YmUxP8+dhQP6EKM7VTTi1ca4gAabyMzXhmFZA8McPvma+RxGJDjjt31U4bpMvl\n5/erQt+TbyKtq3R6kFZIigCJ5W/l1LIn7eJAyrfkAQGSu6mUFRrsc4O0GQNIgCSXCJDi+jFF\nBaSyqfsY1Wuk/AeLCw0WkFQteUDHBamXSWvVTuHB4kKDfV6Quvs73VYYID0CSPG74C2vxoPF\nyeM5OEhbJAHSgUDSeLA4eTxHBekq0OvW3NvfjykqIJVNfTNNkDQeLE4ez4FB2loMCvRjCZMo\nRopKgBTVj7e8Gg8WJ48HkBabjBqJYqSoBEhR/XjLq/FgcfJ4jg7SRhgg7QtS/uMnlmk8WJw8\nnoOCdFtruLBqt9n0UCBpPFicPJ4jg7QRE+jHFBWQyqb+pw2SwoPFyeM5KEi3J+0AabvpsUBS\neLA4eTzHBUl0rQtIxwKppESAFNePKSoglU39D5AkXkCKUemcICk8EFlPojOC1AGSrCkgySUC\npLh+TFEBqWxqQBJ59wSp/3gsIG03BSS5RCcFSXStC0iAJJYIkOL6MUUFpLKpAUnkBaQYlU4J\nksbjJ/UkOiFIHSAJmwKSXCJAiuvHFBWQyqYGJJF3R5Du32kHSNtNAQlbsZtACgZIZVM/IkjJ\n4znqGWk7fagfU1RAKpsakETe/UDqAEnaFJDkEgFSXD+mqOogYTNTmoGrWvJBd0SQhu/PfzyQ\nygz3ac9IKg9E1pMIkOL6MUUFpLKpAUnk3RUkQfpQP6aogFQ2NSCJvIAUo9JpQcr9qqd6Ep0O\npA6QxE13Byn7ywfrSQRIcf2YogJS2dTTt+HmfB1uPYlOB9L4o5eAtN0UkOQSAVJcP6aogFQ0\n9TSzA6RV754gSdKHYkxRAalo6vHH+rhGekyQOkCSN90dJFbtNr2AFKPSaUHaSB/oR1sZiUSA\nFNePKSogFU0NSDLvXiCNaw2AJGgKSHKJACmuH1NUQCqaGpBk3h1BEqUPxZiiAlLR1IAk8wJS\njErnA0npQ2P1JAKkuH5MUQGpZGpAEnp3AqkDpIimgCSX6GQgTWsNgCRoCkhyiQAprh9TVEAq\nmRqQhN79QJKlD8WYogJSydSAJPQCUoxKpwNJ60Nj9SQCpLh+TFEBqWBqQJJ6ASlGJUCK6kdb\nGYlE5wLJrDUAkqApIMklAqS4fkxRAalgakCSencDSZg+FGOKCkjlUo8fjwWkTS8gxah0RpAk\nHzMP9KOtjEQiQIrrxxQVkMqlln6DUKAfbWUkEgFSXD+mqIBULjUgib37gTSoA0jbTQFJLtGp\nQLKn3oC03ZRrJLlEZwNpeqMDpO2me4F0n4Gzaifx7gFSA0hxTfcFSZA+EKOtjESiE4HUAFJk\nU0CSS3ROkLbTh/oxRQWkYqkBSe7dFSRB+lA/pqiAVCw1IMm9e1wjvd5AEqYPxZiiAlKp1IqP\n6NeT6Ewgddb9WEASNAUkuYnjR8QAAB5sSURBVERnAsnmCJAETQFJLhEgxfVjigpIpVIDUoQX\nkGJUAqSofrSVkUh0IpA6QIpsug9Imk8W15MIkOL6MUUFpEKpASnGC0gxKgFSVD/aykgkOhFI\nM44ASdAUkOQSAVJcP6aogFQoNSDFeOuD1AFSbNNdQFK9a15PIkCK68cUFZDKpAakKC8gxagE\nSFH9aCsjkeg8IFlfDilIH4oxRQWkMqkBKcoLSDEqAVJUP9rKSCQ6DUjOzA6QBE33AEn3Zl89\niU4D0isgRTcFJLlEZwGpAaT4poAkl+gkIDXN7OOx2+lDMaaogFQkNSDFeauDdBXoFZDimgKS\nXKKzgPQKSPFNdwBJ+WZfPYlOAtI/d2YHSIKmgCSX6CwguavfgCRouh9IWt+ZVk8iQIrrxxQV\nkEqknr72W+dbPOtJdBaQnOcaAEnSdC+Q9L5Xup5EJwGpA6SEpvVBsk5IgCTy7gBSVPpQjCkq\nIBVIDUixXkCKUelkIHGNJPcCUoxKZwOJVTuxtzJIi0skQBI03Q8kYfpAjLYyEolOAVL/XAMg\nRTetDpL6PYp6Ep0BpGbx6Pd2+lCMKSog6acGpGhvRZAaQEpsCkhyiQApLospKiDppwakaG9d\nkG6PfselD8WYogKSemr9pdV6Ep0AJO9aAyAJmgKSXKIzgLT4vgZB+lCMKSogqacGpHhvVZCW\nt2MBSdIUkOQSAVJcFlNUQFJPDUjx3qogeS6RAEnQtDJIBZZW60l0BpCWn6HYTh+KMUUFJO3U\ngJTgrQ1SbPpQjCnqNkjt1VYd7SxCa7gxXkCKssj9kA4EkFatnf4JOeZOreHGeAEpyiL3QzoQ\nQFo1D0jt3AFItr3Mv/hEkj4Qk0fLiukNVs1bEyTfJVKta6Sel2kCNwfJOVtpDTfG+2Ag3V7G\nD/VJ0gdisoEJmd5g1bwVQfKuNVQEyTozOSBNhP3vZnp6P6ddZbr+O3zMfO+d8VvyIXkYkKLT\nh2JMUUVaTxO4kZu2dc5ILDaM5nxfgyR9IEaPHMf0BqvmPRNI5szjXCPZr4AESCnec4DkrjcA\nUtj5wjVSirciSN5LpCog2achdwNTO+f/p7e7qqt27i09+//tV0AKrDXUAMleqmvd7e1iBVxn\nuHHeRwQpIn0gJoKj8R9Hq/j3unOAFJ8+FBMBUuu+y808l4VDZ7hxXkACJKl3N5BiTWe4cd7H\nAellF5B6s27pAVLYC0jJTSuDFJ8+EBNZeOuWXhik09/q+7wq9FmiY0BSTb0fSGsAcUaaLLDW\nwBlJ0PQ8II1/AFLQG5jZAZKg6SlAau2/ACnoBaT0phVB8q411ADJf2sPkBbewMwOkARN64KU\nkD4QE1F0a9l7fbFhSyJAistiJAAkzdQ7gbS418eTDQFvaK0BkARNjw+SnkRnACklfSjGFBWQ\nNFMDUqIXkGJUOjxIpVaE6kl0dJBCMztAEjQFJLlEgBSXxRQVkBRTA1KqF5BiVDoLSNZHkUTp\nAzHaykgkOjhIwUskQBI0rQ2S/eFYUfpAjLYyEokAKS6LKSogKabuZZp9XYMofSBGWxmJRAcH\nKTizAyRB02ogeb73RJQ+EKOtjEQiQIrLYooKSHqpASnZC0gxKp0DJK6RErz1QEpLH4oxRQUk\nvdSjTKzaRXvrgBReawAkQdPqIMWmD8RoKyORCJDispiiApJeakBK9tYBKXyJBEiCprVAKneP\nop5EgBSXxRQVkNRSA1K6txpIielDMaaogKSWGpDSvVVAWrlEAiRBU0CSSwRIcVlMUQFJK7X/\ni08k6QMx2spIJAKkuCymqICklbrg0mo9iQ4N0spaAyAJmgKSXKIjgxT84hNB+lCMKSogaaUG\npAxvLZBS04diTFEBSSl1+BIJkLa9gBSj0tFBSk0fiNFWRiIRIMVlMUUFJKXUgPTgIHUrcwZA\nkjStAlLRpdV6Eh0cpOBaAyAJmlYByfo18+j0gRhtZSQSAVJcFlNUQNJJHfpQnyR9IEZbGYlE\nBwcpOX0oxhQVkHRShz5mLkkfiNFWRiLRcUFav0QCJEHTGiB1gPQEIIVndoAkaFoDpBdAAqRq\nKh0bpP6Va6Q0LyDFqHQCkFi1S/MWB6kDJIF3d5AKrwjVk+i4IK2vNQCSoGkFkAqvCNWT6NAg\nrZyQAEnQtA5IGekDMdrKSCQCpLgYU1RA0kgNSJne0iBtXSIBkqBpeZDWL5EAadtbHKQXQBJ4\n9wap9IVsPYmODNIaR4AkaFoFpJz0gRhtZSQSAVJcjCkqIOWn3pjZAdK2tzBIm5dIgCRoWhyk\njZkdIG17S4O0dYkESIKmNUAqK1I9iQ4M0qpEgCRoWgOkrPSBGG1lJBIBUlyMKSogZafeukQC\npG1vWZC2L5EASdC0NEhbl0iAtO0tDJK5RPI9VCxIH4oxRQWk7NTl3+3qSXRckCaO/CQB0nbT\nwiCZmV2xd7t6Eh0cJP8HLwXpQzGmqICUm3oCqdy7XT2JDgnSJyAJvbuCZH0RVymR6kkESHFZ\nTFEBKTd1BZHqSXRMkF7s2TfXSKlNy4I0n9kBUpq3OEjjchCrdulNy4JU492unkQHAmkSo/vc\nXFcFJEnT4iAVf7erJ9FxQDJva4Ak9u4I0ufW3VhB+kCMtjISiQ4DkjXR3n5idTt9KMYUFZDy\nUgOSirc0SFscAZKgaVGQNp8PEqQPxGgrI5HogCAJHrTbTh+KMUUFpKzUdUSqJ9FhQDLXSIAk\n9+4L0kbngCTwFly1E10iAZKgaUmQXqy7SMnpAzHaykgkOhBIg8lOSIAkaFoQpPmzJ6npAzHa\nykgkAqS4GFNUQMpJ3W0+ZydJH4jRVkYiESDFxZiiAlJO6u0HViXpAzHaykgkOiBIL9asITl9\nKMYUFZAyUgueKpakD8RoKyOR6Jggbc++AUnQtAJIXCNleouBNM3s1t/rAEnQtBxI1t1YVu1W\n16D3A+kFkOTenUC6ifS50bUkfSBGWxmJRMogWcfujiB9ApLQC0haEumCZB+8e4JkdiY1fSjG\nFBWQ0lPfZg2JAkhitJWRSHRgkJ5t1e5EdtPo+nIVaO89ibO0Q3LzaHtEkPpLpCqzBs5Iyan7\n9aDLxpRBkj4Qo62MRKKjXSP1GgGS1LsPSP160GXjIlaSPhCjrYxEoqOt2g1vdtsGSNtNC4LU\n/QMkFW9pkLYmDYAkaApIcokOBlJXb/oNSKmp77fMuUZS8ZYC6aZRnek3IKWmvj/WUGXaUE+i\nI4JUZ9YASKmp74+eVLmQrScRIMXFmKICUmLqDpAUvWVA6ipOvwEpMfXwwCogqXgLgdRfItWZ\nfgNSWurhhLQpkCR9IEZbGYlEBwSp0psdIKWlvmu0PWWQpA/EaCsjkehQIHWAFOmtD1Kv0daj\n+dL0gRhtZSQSAVJcjCkqICWl7h+GBCQ1bzmQBKkF6UMxpqiAlJK6s2Z2gKTgLQHS9ClzQJJ6\n9wKJayQtLyDFqHQYkHqJXm4MsWqn4wWkGJWOBdJrfzaqIlI9iQ4EUgdI0d7KIN1PSD1IDSCp\neIuANH7JEyBJvXuAdOfoKUE6h31+Dl8FUMcAKTq1fUJ6SpCS9/WZzkhmZscZSezdAaSua7hG\n0vOWAOkFkGK9VUGaFOpX7ABJxVsIpA6Qorw1QbpPGV5fhV+OkxGjrYxEosOAZM3sAEnsrQvS\neIUk6jojRlsZiUQHAukFkKK9FUGaTkgDSYCk4i0DUrf9u0jC9KEYU1RAikrd2Ut2kq4zYrSV\nkUh0FJA6A1Klx7gAKSb1yBEgKXv1QRL+nIswfSjGFBWQIlJ33WzpW9J1Roy2MhKJDgVSNz2f\nD0gyb0WQXiaBZF1nxGgrI5HoICDN3vAASeytBFJnzbylXWfEaCsjkegwIPVveK9ijgBJ0FQL\npM6ckORdZ8RoKyOR6EggWSekjdzb6UMxpqhHAKmv1PjpIF/ZVEDycgRIOl5dkJyZXRWNnh2k\nZmavgzkwaYDUTRM7QNL3aoP0Yq011NHoyUHyQDRYZ52etEBanpAAScdbAKTxJlIljZ4bpBBF\n04npTpICSIaj+ekOkFS8qiC5a0KAtOldgci2y8b15nbqbroVOz0cJGmaFaOtjESig4D0Akgx\nXhFE09kpJ7XDkUUSIKl49UGypuCAtO61MbrOuK7/DP8FrTMWldriCJCKeDVBWtztA6RVb2Pw\n+DSAvAzmB6qb0SRNveQIkJS9uiC9AJLU23XdhFEP0ovHAqen5XlpNfUd0wBHgKTjVQRp+fgJ\nIIW8PQQWFj6KhhPTBkvbqXtMXweO3IkdICl5ASlGJSUdRggGJFxy5lO8noDPMExbqfvz3as1\nsYva66wYbWUkEh0CJPd2HyB5vNa8rL/gWRC0vFwyQHlPS2uphyyGo8i9zorRVkYi0fOD5Hn+\nBJAW3gAqn13IwpO+l4mlcOpheWKFI0DS8eqDFJE6I8YU9ZlACiAyW7WLgWlcxvMSYm5SrXEE\nSDpeNZC6vZ7QfxaQPkNsdN0WSKM/cFaa1hBmD45PHE1xKXudFaOtjESig4DUAZLf5qwsrotk\nII1mATKhZD65Mvwn5AiQdLzqIMWkzogxRX0GkGYsmJOJBxS3VRC0FZRmT8GaVEljyorRVkYi\n0bOD1O32mbFHB8lhYTYnm4Oy3XjBkmd+N3+YfLySCnIESDpeXZA6QHJtzop7aWOc4W6DIFmr\n577bTCNH99aJY8qK0VZGItGTg9R1npkdIM1nZy5Fr+ae6lYVVq6hXldIGi7DPlc4AiQdrx5I\ny5nd6UGyj/fFOtsAkqwK9hvWwu7LFq/uw+OjJOvnO0DS8aqC5M4gzg3SNkbyR7DXT3bdbAVw\nJMps/IzsWitGWxmJRM8Nkv+EdGqQPBTNTkXzLwtKFMlJ4TlP9ZZxbGXFaCsjkegIILknpBOD\ntHouWtQpQ6Qhy+eLi5L1vznHVlaMtjISiQApLsYU9QFBWjsbdR6MskS6gzS/yTujKuvYyorR\nVkYi0VOD1I2fv4xMnRFjivpwIC0w8q0uRFZh1d85a+svDkeAJBzIg4D0uvh+jjOCtIaR92Qk\nqsK639xnWnC03RqQVLxKIA1HTOT3g2bEmKI+FEirKwwZd0W3/O6DfOPfgtaApOLVAMmckM4O\nUniFIXPpbNPfeU3SGpBUvIAUo9L6zi7mV2ate6ttNkjeW7Wi1oC06dX4tlsZSP6Z3blAcj40\nZE3pBAPNB8nz1IOsNSBteYeviykOUjesfS8/gHkikLph6WyJUbPZVlAFmd+PESBJB+L3jp/z\nqgbS8lL6JCCNh+70WGq3oGhroDogWSjJWwPShrcWSJ3/8SBB1zkxpqh7g2TOAZ8LjMTfH6cF\nUoIXkDa8dUHynZDOAJKz7Gx/oWPMygsgaUn0tNdI3ZlB8mDUTRjFrLwAkpZET7tqtzKzOzpI\nC4xerLNR3MoLIGlJVAIkiTcXpLUT0sFBWnD02YUxAqRKEj09SCmpM2JMUXcCqXM56rpPg1Hs\nN5oCkpZETwrSeOvkXCDN73vOL44Wv/YgGiggaUn03CD5Z3YHBcmD0cRRiKKtgQKSlkTPCVI3\ngZSUOiPGFLUySD6MXuyLo9BPvQJSFYmeF6T7gbTf97NXBcmLkb1UF/7xcUCqItFTgjR+xLnz\nr1MdDqT59zRGYQRIdSQSDDZx0lAapPux5D+IjgTS/SGgBUdzjFY4AqTiEgn29TI9pxA/zHIg\ndQNI3QlA6hyQnIe8tzkCpNISSfb18m9NqT1BejkFSCM+81+UeJ1zVPJoBqQtiWT7+pAgdQNI\n15eUe5B5MaaopUGyL4s+O+ub61/dqyNAcjeVsuR9fUSQpnfm202khHuQeTGmqNsgtVdbdcwD\nluN8NV+rPf2WygwjyVAASc+S99W+Rloes56fKogoQipIr8PXtDvpIrrOiTFF3QSpnf4JOJyA\neaLm1TF3kUE6FEDSs+R9tVbtrBPTYubuZakESOMvWY0npLSuc2JMUVNAameONZCaxoeRlyNA\nWmwqZcn7apzTz7E5M/ewFQCpsX6f9PaS2HVOjCmqHCQzgxOD1Dggeb4dSDoUQNKz5H0dnJ35\n+KX3B0i99rmY7EUVyeNu7BNS/76c1nVOjCmqGCSLlxBI/7uZ3dYBycbo8zP/gMDSLPmAukzz\nuNc5Sf2LCCR3xic9kv0gzU5IiTe4smJMUaNBau8Wf0aaHqu7lz1yKJyR9CxpXx0YZiDdX6NA\nWsCUDtLLk4HUTnO7+Guk4RcmXwJFFAwFkPQsaj9CMFggjZOMWJBiVvW810juCek5QHI2iVft\nbgV72eYIkBabStn2fmzAYCZ09o+FJoDUuYnjavg6/kLp6gnpECCZ+2VXjD499ZMOBZD0zJN+\n43ifO2eXRq82SLPFBwlI4uXx8E4PR1bqJwfyYkxRUxYbVh2ewY5no0+3eBFDASQ986SPAWm2\nXGddK3121nYxSMIf1Pa4J45e1n94/kFACjzAEHQsRztN6tZXQAHJ3VTKPOnzQXpZmhCkbvtX\nEpbu69X3BNLGD88/Ckh5Ktk/OPS5xhEgLTaVMk963/G+PLssQPLQE4Jp/QoqFqTG3oNzgGRV\n83ONI0BabCplnvSe490zT5uukbYBWvC0DtLmkw+j+34pNLE8XjQ40U3EMzNZMaaopUGy35Vy\nZrKAVEyimy1Bmk3gbGcAldeZdZ7IdZDWTyojGf2jSdbODd1+LqLlT3FmxZiiVgBJWCtAcjeV\nMk96IUjBiVv36gHJT10QJM/b7OCbyGjmz8pM0535kNzPehwCpM4qnHsCjhkKIBWT6GarIC0v\niDwgDNFLloRALZZ03b7nvc9OSKcAybKM4xWQykl0s+XxPLtb9LoO0RhvHfQOSdvreuFrqNeA\nmXWsf+cCKed4BaRyEt3MdzyPZMyvhILH++x2rUOSffwHSAqCFMTIrGMt1vQOeI1kcQRIcTHa\nyoQkulnweJ5BtJix+UDqPNdXodPJQMLryiOv4fPRNLHz3WU63KqdxREgxcVoKxOS6GYhkOYQ\nKYJkXXXdvVKQzJzzJQzSDhpVAkmws4DkbiplnvRekBYQrXK0+JDFGg7zBfJwz1P4p0XngiNA\nkg8FkIpJdLMlDdZVjIwj90MWCyLmZMzT+LqeYffp0mmusDYrfCCQJDsLSO6mUuZJ79LgrAZM\np4U1u3i682HmEDmitMrR9FVudiNzbJ0FJNHOApK7qZR50s+Od8/i9HRacG19CF6QFqerQLrZ\nycvzvfHWHpwEJNnOApK7qZR50pvj3XePZzz4raNZPEwPSAt7tVP6L6fcr7uecXQSkIQ7C0ju\nplLmSb84TL2XQ6mfg9kCycrrPLP3ErI50acASbqzgORuKmWe9LPD2V4OmE3Dcp46Xlnevvdt\nINmkaPGdBWcASbyzgORuKmWe9EuMppVmi6RcAV2A3LlbmBwvRJ3K1XdWjCnqTr9qrusFpFyJ\nOt9do9md1e2BuN7g4wVd51lO+PSfhayToc/C1VuvrVaMKSoglU2dEaOtzJpEgZuv0x+SgTje\n1QfemgVIngsjm5icLxYHJKkXkDZs9Ws1rtZ4MLKObtlAHFRWH8Fu5p8scs5QHmQASbyzgORu\nUrP1L3q6HdZLjMyDCNLPI0SDNLE0OyH553Dr3y8JSDpeQFq3DZBuB3ToibrkX97Z+FBQY6E0\nErvCkRektB1TjTE1BqSyqTNi9DQRgBQ6I0QMJOYa6b4UcQ/opnOf6NFy364Bko4XkNZt5QdD\nbmZA+nQtJ+u1W3HsNZUv/Zrl7FoBA6SyqTNi9DTZvkaaTkafoTf97YHknRY2nnxw3ZqpM2JM\njQGpbOqMGD1NtkAaf+vAOWAjB5J3NF9C39zvA0k3dUaMqTEglU2dEaOnySZIvg/2RQ8kF6Tg\nj2BsAg5ISl5AWrcUkOIHkg+SD6UKqTNiTI0BqWzqjBg9TRJAShiIBkj/5izVSZ0RY2oMSGVT\nZ8QoirL1ZIMLUtJAlECqnzojxhQVkMqmzojRVmZNojlIaQMBpNIqyXYWkNxNpcyTfgZS4kAA\nqbRKsp0FJHdTKfOkt0BKHggglVZJtrOA5G4qZZ70gJQWY4oKSGVTZ8RoK7MmkQEpfSCAVFol\n2c4CkruplHnSTyBlDBaQSqsk21lAcjeVMk/66cYNIEXFmKICUtnUGTHayqxJNN0ABaSoGFNU\nQCqbOiNGW5k1iaYHCQApKsYUFZDKps6I0VZmTaLpNiwgRcWYogJS2dQZMdrKrEnUib4oCJAW\nmyYDpLKpM2K0lVmTSPaUNSAtNk0GSGVTZ8RoK7MmkeyLrQBpsWkyQCqbOiNGWxmJRIAUF2OK\nCkhlU2fEaCsjkQiQ4mJMUQGpbOqMGG1lJBIBUlyMKSoglU2dEaOtjEQiQIqLMUUFpLKpM2K0\nlZFIBEhxMaaogFQ2dUaMtjISiQApLsYUFZDKps6I0VZGIhEgxcWYoqqDlGyLb9Kt0nTv1Nr9\nSCz5gAKkxabJAGnf1Nr9SCz5gAKkxabJAGnf1Nr9SCz5gAKkxabJAGnf1Nr9SCz5gAKkxabJ\nHgckrJYlH1CAtNg0GSCdz5IPKEBabJoMkM5nyQcUIC02TQZI57PkAwqQFpsmA6TzWfIBBUiL\nTZMB0vks+YACpMWmyY4BUrsdcrjM6ZZ8QAHSYtNkDwNSzhHZ5h3OGa0zM2vsQrwlH1CAtNg0\n2eOAlH4s5R7N6e21ONLrSGLJBxQgLTZN9kAgpR5L2Qdhcmq9wz999AmWfEAB0mLTZI8DUvJh\neWvXthmHYnLq7Mz5u5BiyQcUIC02TfYoIN2PycS295Z5IO6RWWMXEiz5gAKkxabJHgak/p/U\nE0Nr+qiaOjOzxi4kWPIBBUiLTZM9AEjW1Cj6WGrtZvEHYkbqzMwau5BqyQcUIC02TbY/SK19\nMEUfzu3QhfVSJ3VeZpVdSLXkAwqQFpsm2x2kdj6tiQbJHMrxp7Oc1FmZdXYh1ZIPKEBabJps\nf5CGl6yr/bS1s6zUWZl1diHVkg8oQFpsmmx/kHJmR3mrXTmpldbZskafaskHFCAtNk22O0jT\n9XrS4ZzcMje11jpbzuhTLfmAAqTFpsn2B0nhgj3jVmxeapVbsXm7kGDJBxQgLTZN9gggKSwh\n75U6nySlO1ExlnxAAdJi02QPANJ9ASzrkMw4pWSm1pjcVX2s4QJIijGmqI8A0n3pq3rK5NRq\nn51I34UsSz6gAGmxabLHAGkH2/UspNtPNcv58r3ML+7bMbWsn51Amm7BVG479ZGz1KcDQP2T\ncLYBUtj2AqlNvxWT03bWSf2mRfqpZ4AUtr2mdtejKPlWTE5bu5Mdmhbpp5oBUth2u0bK+QRC\n7ucm0j9ElNHU7af2Wh1W1PZbbMiBIQukNv3jeBlN5/1c1B4ywh7Ddly1m30QoV7b4fPhl4TD\nOKOp05HpLasf7GFst8WG4c096bSQ2naiL/4rEjKaLvva4WkGrLDtA9KAQdIadnrb6WTSXszR\nXLypt7f7S14v2CNZbZDMclv8DCmn7b2Ddt5FnaZ2L1Nv9v9hB7DKIJkjqE04ltPbDj2YpYL4\nWWFyU6uT6TT66NdHbet8YLF1vZ7Norbj/4Y/ENk6r4vO19xrbbdTe/uS7UJdkMxhFP/OntN2\n6mNcL4g/iDOa2p2YU9sjc7Qsb+v+bU7QUW0F81rrvcbfdzj1atvIKXUbiAvsQlWQpswJU5uc\ntqYTe+WtWlOrk+ES68HPR1KQ/MfaOkhjm0yQAof5KkjbqX3Rwl2oCZJ5Q4g/lHLamuaXuk09\nnV3Gqc9jk2T2bTh1ttZbiPVOtg6Sp+28eSC3OUytHiSpV9sKUi+7mnZ+axcqgjTbkcipTU5b\nu0lr+irf1Nubda31wCQtDj17lUUKkq/tZVtEC4ZZD4LUq20FqZ1RTJILdqH6GSnx6MldLjNv\nLLHdZDT19vbA+Bib1gumw/FymUa/BdJa21lzfynss4rdgyD1altBaid0MYiVXah9jZR8GOW0\nvYyngKQ+Mpr6O3sCM4fNQEUMSGttA3857a1TiulBkHq1rSC1G2mf2DZ2YZdVu+ptx+Zpa2UZ\nTf19Pb617h9JIHnaBv5y2k8wjPOqWQshSG5bQWor0n0XeCyQdicprZOMpsu+NDopbsVBWplf\nWTBIj2JRW0FqdxCPC9L+JO2RuVBXBW1x2KgvNgQaW67xxBIJUrCtIPViDO20848GEiQ9F0je\nJeyNJxtW204H4cqqnfVf286O4o3U6223Uy/G0F7spaa1Xaj/0OrpScKeyaS6n/ZbhDBMYoCE\nYQoGSBhW0QAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJ\nwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJ\nwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwQAJwxQMkDBMwf4PWVmp+DQJJNsAAAAASUVORK5C\nYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data.world <- data %>% filter(country == 'World')\n",
"n <- nrow(data.world)\n",
"\n",
"##current confirmed and daily new confirmed\n",
"plot1 <- ggplot(data.world, aes(x=date, y=remaining.confirmed)) +\n",
" geom_point()+geom_smooth()+\n",
" xlab('') + ylab('Count') + labs(title = 'Current Confirmed Cases') +\n",
" theme(axis.text.x = element_text(angle = 45, hjust = 1))\n",
"\n",
"plot2 <- ggplot(data.world, aes(x=date, y=confirmed.new))+ geom_point() + geom_smooth() + xlab('') + ylab('Count') + labs(title = 'Daily New Cases Confirmed')\n",
" theme(axis.text.x = element_text(angle =45, hjust=1))\n",
"\n",
"grid.arrange(plot1, plot2, ncol=2)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAeFBMVEUAAAAAq/0AtusAujgA\nvdIAvm0AwJQAwLUaGhozMzNNTU1TtABhnP9oaGh8fHyGrACMjIyampqliv+np6eppACysrK9\nvb3EmgDHx8fQeP/Q0NDZ2dnajwDh4eHp6enrgzXr6+vsae/w8PD4dm37Ydf/Y7n/a5b///8p\nPEQGAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2di7qbthKFp7fUJSdp0rRpG6eJ\nm7Tl/d/wINAVdBnMAJK91rctAx40A+hnhMDe1EMQtFl0dgAQ9AgCSBAkIIAEQQICSBAkIIAE\nQQICSBAkIIAEQQKSBImsclaf3hK9vqqp62uiN1fvo/fDgtd/lB297zyf7OD0erM1ujfvP01x\nvX/TRdYLvJVC/DR8+oobkm/H3fKk3L50+9f6yQUUOxyZQwQldDhInyaL4eB8mab+sp9004LX\nDEexyfI6o/FsjcHh23HibSpub3EpxK58HonVy9/ylNy+dPtX68Mw9yG5YuxwpA8RlJR0167Y\nit7Su75/R6+Gs7Caeku/mU86ejvkhg8dvd/sJLfeAqRXU8bpUqnEW1wKcVVgzpi/5Sm5fen2\nr9ZbeqNPFTHFDkf6EEFJ7QaS6h6o5qGWvKHXn4xBR8bsjTrT/UVv9Ad/6KkP1M1W700++fSG\nundT5lPlX93r6eMvyviLsvuto1e6NX4Ym891PBu/oeG8bNcbGomqxgT823j6vg7v5Ds2dXkp\nJhmiFxj1QXBvhlU+vaI3X4Iwhy7gmz5R7fUN6fDsxkS3L5Dbl27/2g38YvehPhBTdMnDkTxE\nUFp7gfRl7K10X9SSt3rKN3u1OORvTHfkr9nqxmqYVwvfWSBeD6iMH4/L1Tn43diUdUsbm+U7\ndU7tp+Zt1nszVWMCvo5n3AEn9alzbOryQEqG6AVmQJqCU67+eKW7jzbMcdU38Wo/TL2pd/7G\nxLfP1xwfl5HU+eTteDZxB2KKLn84osugpPYC6Z3q8L+m8TT9+ss05fSB3vuIBGsuVjcfjhW9\nV3joLppGZGBgbHZjlZ+G1KIHB96q02mn5v7SxOn1hmp+M0ZqWada3auJAN+xrstrW6kQZ4G5\n4N4O6WaY/CMMU6365XV8y1/RHypg8gJIbN9yt9uKPjjYFERTcnYHgsKjET0csWVQWnuB9Go4\n5MNV66uxH6GnrD6NHYscSP7q5kPVioJBAzP7ajIZOyVv3XX1hyHTXOndcLp/PzSmyHrG7dth\nySfNmnNs60qA5Ic4C8wt+jR2reZh6lWjWz588OG3ETIbQGL7lrvdVPSpex1+oou/goCzhyN6\niKC09gLJb//+ciV9nHMgxVafTfmzZrBsuF6nV7aRDOf9d8MFwruh7xRdz3hSJ9/3QyIIndi6\nEiBlA/OceMtMmLktH3LGfGMS2+cPEAY1+hzpnqLq280Dzh2O+CGC0joBJHOhqz8wHRV7pdBf\n7wZpqPwVdaaet/Sle9O/6caTeQakLwNxr4e8MY9W1+VC54W4GqSg2rf06v2HT7MAotsXAanz\n96/eB5PeJkGKHY7EIYLS2gukWcfnk7tHYsaoBpPoqN21e7vo2n3KgvQq2Ij3tpkMfbshz/wx\n9O7+yIKkKFLxTXV98jqi78NmlwuxDJILc9a1C6odl34xn73PbZ8nb1/+EQyydTSOF04XcOZA\n+DXEDkfqEEFp7QVScCmurqzNvYirReqdOk2+dZfF9m7KX/7q3UDBdGGeBGkcmftDrdEN5/a/\n3AmUVNtRNxW/5EF6T29UfFNdzrGuy2t28RCZILkwf5su+ylWrboR+kVfI+kAktvn5PblNbit\ne7V3m6/egfC2KHY40ocISmovkPzBYdXrtwf/te2n/DVN2HHxT6/syO98FPq3OUidPzsZT417\ntDY1vqVpPO51fD0b8KdpbVeXG/7+Ta+VC5EJkgtzNvwdVPvO7h8bQHL7nNy+dPu3H2ub+oEf\nxsF5cyA8kGKHI32IoKT2Aim4Xfla3+KcDOyBVg9yBU+FfXjbmSfO3H3Rd93QcsLG+X4GhHs2\nbDDuXDv7MDZN1b+Lr2cnOte+AsdjXe/9FBALkQmSF+anN/4N2bDa0Wj8zG5Mavs82X1JAUid\nCX2YcAfC8xw7HLlDBCUkDVLEw/4uII5wIPYUQHoa4UDsKYD0NMKB2FMA6WmEA7GnsHMhSEAA\nCYIEBJAgSEAACYIEBJAgSECCIF0h6MkEkCBIQAAJggQEkCBIQAAJggQEkCBIQAAJggQEkCBI\nQAAJggQEkCBIQAAJggQEkCBIQACpWl2M4p8GdokKrvEP4vVAWwSQqtYlOWemJ4hiOPAQAUgy\nAkhViwFSzDC1qOgBulcAqWoZTMbem1/GALKfOLvLNOst8wyvF1bnD+IIIFWtiysv07s/fQ1A\nsp9cAutp1hWz6gCSjABS1VqCdA2nYyB5795s3AAZSUgAqWrFQNI9PN9gaZUF6eJVAZBkBJCq\nVgQkn48NGekKkEQFkKpW8RrJAwognSmAVLXiIF18Gvw0tf4aCYMNQgJIVcvkGz2wbYaw/YEH\n92SDPzCeAwnD3zsIIEGQgAASBAkIIEGQgAASBAkIIEGQgAASBAkIIEGQgFggdV2n37pgbvkG\nkKDnFAekznvZqeib1s2I1B9NU72aIiLzQUx9fPFaG6Fq4KoSmxZcsTKSg2UdSGT+7JSbld2M\nXaqBq0psWnC1BiTds8uC9JOSVyUpjZNuqugMgtpVtm2XCIpmJDJvNHbt7BShawdXa2xacLUC\npH4dSF9VBvo6aCimCTs1FqKbsUs1cFWJTQuueCB13gQbpIJEN2OXauCqEpsWXLFAKg/XASS4\n2s+mBVcckDrGDaTgPtJYM0CCq/bC2X3UbpXGmgESXLUXTl0gjSqBJOwOguoQMhJcneCqsnDq\nykhjzQAJrtoLByDtUA1cVWLTgiuABFenuqosnH1BYox7Y/gbrnazacEVByTGnVjckIWr/Wxa\ncMXKSAAJrs60acGVNEjuaxQlkLLuIKhVSX+NAhkJrtoLZ++MBJDg6jybFlzxQOo8mAASXB1s\n04IrFkj4GgVcnWnTgisOSPgaBVydatOCK1ZGWquxZoAEV+2FUxdIo0ogCbuDoDqEjARXJ7iq\nLJy6MtJYM0CCq/bCAUg7VANXldi04IoHkh7/5v6I/lgzQIKr9sLZF6TO3UjCfSS4OtymBVcc\nkDr3ZANAgqvjbVpwxcpIvem9lR65w9Pf0NMLz9rB1QmuKgvnkMEGgARXp9i04AogwdWprioL\n55BrJIAEV6fYtOBqTUba5elvMoX697K9+xezeurYvQFXh7uqLJydQVqpsWYeSCMvU3Fz/3F2\n9l/9yBTKsPdWSdDWwo6HK75NC67OBslCMkLRh/8I3ZiQLsj+40y6hagJ7Y31NnB1gE0LrnYB\naVQJJN8tmb9wqp/ZjCXp/+zcTwUE1aWTM9Jt+ofNNOYmnX5uCxtapiXJ08p6G7g6wKYFV9WA\nNP71ZBeSFyQtDCkgUGxvrLeBqwNsKnDlLsz9oTDyVjwVpM+fP9NnXRCpF+n5acpshSn0Cxnp\ncVxVFk7ChLz2Rv6UW5EF0l7D358LGkw+DiJdKLpUoeZssd9ObeMYN+6qsnCyIOnRZX/KrcgB\nqdvrhiwTpKz226ltHOPGXVUWTjEjUaJDxAGp2+3JBkGQbK9VD1WY2WB3kG8YzK7ZqytNHqc5\nnWVTgSsyHTqyY2F6wqzIyUgrQFr3NYoSSINJESQb/ThmrkfKg1lvC/1P/FkIyiloK/5U3Dap\n+jMSebdyqQ9m3VnFH/ozU+nbuq2cLNt2VVk4MZP/BhGZYnjzpwZNKz4ISO7JBwcSRbt23lMR\nZlZ4x+9k85iuKgsnBVJO04oPAhK5XiupvTFOBJ1YHx/ziXnJ7vidbB7TVWXhACS/29b7s07k\n3+mlcFZyx+9k85iuKgvnCJDOu49UAun3QUS/j2/jnz87SLn6dRCReqlyeA9nfxXc8TvZPKar\nysLZGaSVGms+GKSclKtfCzJ7zQ2eE/XlIfLnaU4n2jwtSKNKICmbEkg9b/i7BJJyVQLJ3w1u\nsBND5FBfAmlmjoykZB4895+LpcyV1POcl0+0edqMNNbcKEjzJ0BoOSQxe3RC4gGJBprTiTYA\nqT2QbmZ4/HbzRshDTPTi6ZPELauVx6+B5nSiDUBqDySaZSS6LTKS6/2NVt7s/cevgeZ0os2j\ngST/3ygqA+nnQUR+oUbH9eygab9SyBq5/t39x6+B5nSizcOBZMvKbshKgpST3bXLJ4HjTyPZ\nJ5b8yyrJY7yTDUDyJQ1S596eGiSKjOnRDCSyl1DT7SiJ66jHbLmVhXMISPL/jaIEUn/sfaQS\nSIPJy0FE6kUvx+lp9qWefRnsT3I/h2R+AwlqTyWQZuasjFTns3YHZqSXBdnTGLm01N/woPkm\nmwfLSD1AWgGSfRh9BInMMuFjvJMNQPIFkM4DibwcZECiBUjj0qnozQXVbETCmtyMSfKHmlPt\n4A4bgORL/BoJIPFA+m4Q0Xfjm/cyy74zByh8Goli/T/vlhW57/3ORDd7C1mPaywHCEmX3vjh\n/jwCpARJNX+NojKQcrJHiBZDgLGkRd6llrkBHJiY1YxhcjRel4mHMVwINvlFc6guXIK8JQWQ\ntmmsGSBxQPK6dtEBCWtixywoCptr9xQdaR/rsbe1oiP2xpX/6byjGUQcrSasKn3/zNp4/8on\naRLfN/NqTL5NqjmQRpVAUjYlkPoqh79zUtWUQPJ3efDLRpGjMP+nArEfr4n8C4LFvxcI66Hl\nTyzF/lWBHr+P2oSGS1/Ln9xJ2ER/8GleTTTg0Ia8CGdG9j8upKrR/4/BbhMFNiWQljFJaUQU\nGWll1y560nUfpVMAuZK8py0W9Ywf0C350zCuMEMfha5dPEF61Zt/inBbyLexM0kTSpj433ox\n/daoL5OSEylUm5DKSMt60LWrGKQflEi9TKGa+bRIaTB5oUTqRcHUNPviRdjivCaShY0JElko\n0zam9zdvl6765PgIzybYsHQ1PvRLE+9R/uTzxY7CidnQAiDVDlJGNw1SRqqaH5VIvWwxzuup\nH5XN90pkynGCyBSDvEZpGmPi12MWWeuWaZeq6FMW08dkM9IS2YAhq0Uti8QW8TRjMZIgyd8W\nus3qAUhPAlJGyub7ggaTb5VIF6rBqtIt/FZV840S+YUyVOX4yTfR1u2aZ6F1x3CcQcKpZmlh\nzPKZzYGk+7++DgUJw9/Ng5SRquabgpTN/yYR2cLOjhpMftEiUi/SU+pNfzDY/DmJSL1omrbF\nIOXq70lEYfG3URK2GEhkQYoltiNBwg1ZgORASsoDKSkHUlIeSEkpm38mES2LUYPJv5OIxvJf\nXdK/RgAJIAGkfwpyICV1GkjuaxQQ9JSSzkhzPc+zWXAlbNOCK4AEV6e6qiycukCCoOcVQIIg\nAQneR4Kg5xV+mAOCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAgiBdIejJBJAgSEAACYIEBJAg\nSEAACYIEBJAgSEAACYIEBJAgSEAACYIEBJAgSEAACYIEBJAgSEAAqQFdjOKfBkbJOnaJDDIC\nSI3okpy7xN4W1gBpXwGkRsQFKUYMQNpfAKkReR24sIyBZPp4nt3lGiyDhAWQGtHFlRcvx1xi\nIF0i74a5i28LiQkgNaIlSNdwOgKSP79YExIVQGpEMZB0z803mD69zPp23ppXdOx2EUBqRBGQ\n/M7aMiPNLLwsBZR2EEBqRKuvkRLWgS0kJoDUiOIgLbt2c8TmXTsMNuwjgNSIguHvqxnW9jOS\n92SDd4l0dYbh0DgkKoAEQQICSBAkIIAEQQICSBAkIIAEQQICSBAkIIAEQQICSBAkIIAEQQLa\nBaRbTPGlg0gX0583FVeynlUmUjZwdYBNC65qAWmEh8ifvX9TW9jxcMW3acFVHSCNf4SM9ISu\nKgunUZA+K5F62cLNDrpzU1vY8XDFt2nBVQUgZXTnpraw4+GKb9OCK4C0zQauDrBpwRVA2mYD\nVwfYtOAKIG2zgasDbFpwBZC22cDVATYtuAJI22zg6gCbFlztAhJbJZBOCAmCtgkZCa5OcFVZ\nOHVlJLZ7gPT0rioLByCtNDl9x8MV36YFVwBpmw1cHWDTgqtGQCL1mopez4+zwntjvQ1cHWDT\ngqs2QFLQkP+EOGWfEG9hx8MV36YFV22A5H+3giagCCA9hKvKwnkekIauHaFr9ziuKgvneUBS\nyWgUMtJDuKosnGNA6qay65Jve4NEjiaA9BCuKgvnEJA0MtMr+rYDSB9H0fBHpCbIzU8fSe6N\n9TZwdYBNC65WgNT154GUkeTeWG8DVwfYtOBqTUbigPSTUrkmrRJIg0kRJLYzCDpCMiCNYnOM\njPT0rioLp5qMBJDgStymBVcAaZsNXB1g04IrgLTNBq4OsGnB1XqQDr6PBJAe21Vl4RwDElds\n9wDp6V1VFg5AEtkb623g6gCbFlwBpG02cHWATQuuANI2G7g6wKYFVwBpmw1cHWDTgiuAtM0G\nrg6wacEVQNpmA1cH2LTgaheQ2CqB1OOhVag1ISPdYwNXB9i04Gp3kKYvhQ+vXv+clv8hQHp6\nV5WFUzFIN/9b4hR+QRwgPb2rysKpFiTzKyWk3NM06wSQnt5VZeHUC5LNQ/ZntLxP6wQp2xuV\ndbXG5jFdVRZOtSDd9G/QNQXSLdMblXW1xuYxXVUWTrUgkctIdGsDJNP9BEi12LTgaj+Qvk4i\n0oX6UUc9O0rZ1AmSl5MKP+naxjGu2lVl4dQLUlLKpkqQbvZHKHsq/Fp/G8e4aleVhXMkSN30\nbdjSN2SbBYnCXh0BpLNtWnB1D0i2zP5mQ4Mg/TyJaFmMEnR1h81juqosnANB6tzbg4KUlKCr\nO2we01Vl4RwJku7ZxUFyv7RaAknZlEDqj31otQSSoCvoYbUmI3F+jgsZSdjmMV1VFs7Bo3YA\naaurO2we01Vl4QAk5t6wD/3EHv/hgzStl6hmRThrbFpoTvvYtOBqPUhNd+0oO7TNBonsndpY\nNfxwVtm00Jz2sWnB1R0ZiflLq1WCdHM3W93/drZa07Wjm32KMAFSNvmtCpltcnpz2semBVd3\ngFTWWHOlIJEu+iVHa0AyK1MyI7lP0ja8kPkmpzenfWxacPV0ILmMRHbO6J6MlIPEfoFk+U2s\nVSGzTU5vTvvYtODqyUCi8GH0WftfeY1UAsl8HPsCCT/kNSanN6d9bOpw5brqkauC5wHp10lE\nulAPo0/FJGXDAOnlJKKx1FM0zSoFe/6W/ibWigO4wqTBlltZOKxzsGPKW/HJQEpK2fBBSirc\n817yI4B0t00trmgqenfZ660IkMRB+m6Uynaq9KcmrT6AbJMGW25l4XDGqSjWnQdIe4GU1toD\nyDdpsOVWFg4LJCt/xT1AGlUCSdmUQOrlHlotgaRsSiANJiWQVDUlkIR3NFfqABO5yZPCaFZk\ni3A6aiejEdETMpI5ZYx3QGdnjMfOSGpLpwElsw+WJnTzr5Wzo/HISL7+G6Xa01SoGVsMmlZ8\nIJDsWApFxicfGiQHSeYhCtLldK18xENNDwVSWtOKDwRSeDU4ayoPDVJ4yyp5ezi9d9ZHc3br\nPtAVQPL3Rq0g6V+j7EsP4wmBND1joTPYXa5OsAFIp4JEwd6oFiQT8iJiZzLaZC9siAcS2SeW\n2gBJb/loQhtcuXruOVsBJF+VguT9GmXqGJMPCcdmZvW9FqkXuUmzfF5RscWRibtok62n3LrJ\nO8HkCBiHWfLBUOlsdZu2KVbN84D0uxbpYtgjZm6UclUrSLqZ5CjRmPUR1n7UouGPSE/pQknZ\nfF9Q2JaK+VEDkOWaUw+xWjf5pmmbAiJMkExdMz0fSCkpV5WCdLNtJXOMKdlYfixI2awByV1I\n5Rv3xPVGG0brHpeXqrllE7oNRweVtrH0zwSQGgCJ1pyXlyb7gMSApNgqGYmCaXObcnG2bxcn\nILDghRMzOBSkU78h2yBIPxgRBYVR9AAvj/JuGSl3hjc2sUYXBF2uJ29jDMqDDVxEclbJao4E\n6dzfbGgZpIQGkxdGREFhpKrZA6RiixOyoVvK5k8jIvVS5fBul/4Z8xVz9I8RkXqRnrJiVgOQ\nHgSkhFQ1QiB9a0XqZQsjVc03VqRetjBSNv+zIvWyhdFg8ouRAkQV4+QvTj5ICSlXf3siMoVT\nAFJCg8m/nojUi/xF/54GkvulVQh6SklnpLme5044XAnbtOAKIMHVqa4qC6cukCDoeQWQIEhA\ngveRIOh5ha8eQ5CAABIECQggQZCAABIECQggQZCAABIECUgQpCsEPZkAEgQJCCBBkIAAEgQJ\nCCBBkIAAEgQJCCBBkIAAEgQJCCBBkIAAEgQJCCBBkIAAEgQJCCBVrMuk5MdL06StXUGbXOYV\nQNsEkCrWJXhbfHRZmvrLFqvpdbxVQZKYAFLFitDhfwSQKhJAqlg+HabfNr2P5eXq+nJLU790\nJhfLUrAatFUAqWJ5CFwi75dIbpmbXGcmAGknAaSKFaHDnw8omQ02pEAa6buEYw6QgABSxfLB\nucz6dtd4urnOTDy6ZpBh3E5UAKlizTOSWZZON1GTWW0AaQ8BpIoVASl7AeQtyYDkcQaQxASQ\nKpYHyXyQIQ6SXZwxAUi7CCBVLH8AwbtE0tdMaUqcSTD8HXT/Lt4iaLsA0vNoSQ04EhNAeh4B\npB0FkJ5Ic27AkZwAEgQJCCBBkIAAEgQJCCBBkIDuBWn618vuXzB3/n9jPnujIOho3QnSRE1n\nieqD/2l+9kZB0NG6D6TOgdMtOepvMcWXatFU9G4mqWw9bBMpG7g6wKYFV/eB1C9AMj27n5RW\n1eSckz8DQW3qPpC8np3LSutZp+mFjPR0rioL57SM1C0XrQDpsxENf4PGifE16c5NbWHHwxXf\npgVXG0HqlovuAimhOze1hR0PV3ybFlxtAym4UgJIcLWPTQuuNoHUTWMMXe/fUQJIcCVs04Kr\ne0HKiu0eID29q8rCqQsktkognRASBG0TMhJcneCqsnDqykhs9wDp6V1VFg5AWmly+o6HK75N\nC64A0jYbuDrApgVX94IU+RoFQIKrfWxacHUnSPOvURxyQ5Zoqmd6X7ul+9jA1QE2Lbi6DyT9\nNYpjQaLpcdaeSo+1NrHjz3BlzkSl/QeQ1tvcmZGSIK37GkUJpMCYDv6iBT3a1znsDny4LatK\nMiCNYnN8V0Y66IRKZT9Srng2m6uhY3egnE0LrhoCaeiZ0K0tkNhXdQCpdVcNgUSmHdBdW7rW\nhraDROyruqOukegGkPappnqQPjoRqeKj+gagt1RybwSich7hgoSMtMmmBVebQNJ3j3b9GsXH\nkiT3hi+S69oxqtrxGH9vRaQK/bISdLWTTQuu7gUpK7b7ykD6ORDRzzOtdUVVdO2+L0jQ1U42\nLbjaBSS2SiANJkWQBMOZgzPX2vrMeDOds3e1SiCdF9ljChnpVgKJWc13VkSq0O9W3HDWmyAj\nneYKIHkSBykubjjrTQDSaa4AkieAtNHVTjYtuNoEUud+Oj/4EX22e4C0ImSAVLOrTSD10R+K\nBEgASdamBVdCIN35I/oAaUXIAKlmVxtBWvx7JPGnv4sg3RN2QiWQmNWUQBKM2Mk80b18srsE\n0i7hPLG2gdQf8IgQMlJalL73i4x0hCshkMJptvuWQUo/2X0KSOZppGU4AOkIV9tA6uIzbPcN\ng0TpFICMJGzTgishkJ6va2dSwA0g7W7TgisJkB7m6e97MlLkeVSAJGzTgqttICXEdv8QIJ2Z\nkX60IlKFfrdSNgDJfaWx+M0wgCSxN9q7RvqxIGUDkMwh2vPL1buAxFYJpL66+0gvrYhUod+t\nVDUlkAQjLoGkbEogCYZTq4goeN/XmVxVbI7by0gvC1LVICMJ22yuhvb/SUSA5Akg8aNpCqRb\n+oJWyhVA8gSQ+NE0BRLVnpGCr1EAJIC0j8291fxjRaQK/W4l6Ao3ZH0BJH40bYEUl6CrjV/s\nC6YAEkDax+bxQXI9OwNSM1+jiG1uCaTeH/6OS1VTAunOiGMqgaRsSiAJhrOT7r18L4EkGqTV\nnRnpwF9alcxI0TvcyEj8aA604fzibdsZySDUHkgUHb0BSPxojrOJHytONQBpb5AoPgwKkPjR\nHGZDrJ+ObhukZrt26nf4abkYIPGjOQ6k+LHiVNMMSC3/iD5FlgEkfjRH2tCd1bQDUkJs9weC\n9OtMNJtXNgCJH82eNn/ORLN5riuAdABIcymbU0Da9L/anwOkubiumgeJrRJIvdx9pBJIyqYE\nUr/DfaRt/7GiBJKyKYG03uveKoHEracE0j7RIyOd1bUjFTLd9TwlMlLOVfMZaeYj/TMhAMns\nlGfs2iU7tdWClOmGHwASuZ8JmfsHSDcDEj1dRqJkLq4VpHTEMsPfeipzH2l0H7lFDZDszwnE\nDk5gRo8G0i35bbtaQUpHLHZDNv/fKEavsabyvCD9YKRuNw6lmvjBU2QXLo7drXWQSNvQbHm9\nIKUiFn1EqAjS8hY1QEopdRBnqhekMdo+/1QCmXpmNvWDJN21cyDl/hsFRaYmlUDqH3b4uwTS\ncgOix6cEkrIpgcTcgbFQ0m2GODb2bWZTAokbZwkkbj3liCNGKzX/PtKoEdGvRuqsNJTj5Fcn\nZSOfkfQpY3kebD4j1XONZEdhOdlmbvKLlWoXQ6kmfvF0qy4j/WekIh5KNfGfp2lFGZDCybHm\nrwUpG3GQzP9kWB7A1kGig0btph2YH4w3NrnhEW2TASmhW70gJTStuA2kzL91OQWkdCe2PZBe\n+FInwxehVDXiIKXPRIudzLFZWtQNUjTtHwBS7sdPzgVpcQAbBykiVc1uGYkDUnYkQdezMKga\npPg9hv1B0v/VPP41CmSkpkGa7z/WTv6fE00v+p+vW+UgnZaREhprPhMkAkjiIH3jRPo1FVrK\n5n8F3fYAyT23M4+5eZBGlUBSNiWQet7w9+9ONL2IvGW/K1clkJRNCaT+0OHvEkiqmhJIyqYE\nUnjYKHjz9E1ByqYE0mBSBKlfOfxtx6KXIZdAWjbaKAQlkDh13KcR0QMz0u8FISMVMtK3TjS+\n1OWPt3CWkaI6KyOReQBuecHWfEYCSO2CFFUTIC27owyQ/g1Fs/l/ARJAejKQbhIgLQSQANKT\ngSSSkc4CKfgaBUACSMeB9DIEWZIAACAASURBVLfRcG2kSjXxt6emQMr+rh1AAkhHgJQQQAJI\nAAkgrfxvFBD0cDrjJ4t3soGrdlxVFs45vyIEkODqCJsWXO0CEgQ9rwASBAlI8L9RQNDz6ozf\n/oaghxNAgiABASQIEhBAgiABASQIEhBAgiABCYJ0haAnE0CCIAEBJAgSEECCIAEBJAgSEECC\nIAEBJAgSEECCIAEBJAgSEECCIAEBJAgSEECCIAEBpPW6BG8Jm0GJD/IrhlWXTdlVzZesqjqx\nLYsFiUq3b0b1AkjrpZtLpnVMFjEDXpO6zN43KFrFZW3dPJDSVT4+SQBpvXROyYEUvEU+KXpY\nY82qarEQIIkKIK2XB9LUg3NcLXOV7uNdrpPlZeraXaYunlnmGV4vrvN3uc4+CGtyM8GHsar8\nCC8mCq/3eYlXd/Vr8bbVloG5X84ieXySANJ6Xewp3TZNV16vQasxLfhyCVecWuY1/MAaXMKV\nQ4Ngrfnal2u0Kj9C/5OZo3l1dtVwWx3ikdhjkQAkgBTRAiSdY2JdugUG4WzcYN6+ozUtrLMf\nehHOWvzaIGL8zT+KbuFjCyCtl4PhcrH9nc0gXbyu0x0g+WvHq1oD0sX17WIu5qtdZh/NIwFI\nACki3TIcOFe/d3cNWs26jBQsXAXSot5FVTZCbkaa1+Je0ZCuYbUzfAASQFqoCFKQBpbvO4AU\nbb6yIHlAAaSlANJ6TY3iEjYu94H+LN6u8iAZgwVIUVYu13AMI0aZHXxzEXJB8j67+LV5IF2W\nq0XDBEgAKaKghfmXAF5rceO+l+VIWrSZxYa/L9fwg8t8LX8A2uWGSFUzkMwHDomw7sTw9wyK\n5eD7bNqLJL9L2xdAqlnF5ndK+7zD6cNzBJCqFkBqRgCpapUa4AkN9J5e2uNzBJAgSEIACYIE\nBJAgSEAACYIEBJAgSEAACYIEtAtINyvSf/qd9LKU+vRHa2yEqoGrSmxacLUGpK7rSm9zkAxD\nrgBIcLXWpgVXK0DqplfubQYSASS4ErBpwdWajLQOpK+DiNTLFOPsUH4dJboZu1QDV5XYtOBK\nGqSflEbTrwVx3EFQc2KA1BleuBkpJ9HzwS7VwFUlNi24WgXS6q4dQIIrAZsWXAEkuDrVVWXh\nVDhqB5Dgqr1wDslI6+4jASS4ai+co7p2PI01AyS4ai8cgLRDNXBViU0LrgASXJ3qqrJwANIO\n1cBVJTYtuAJIcHWqq8rCqQukUSWQhN1BUB1CRoKrE1xVFk5dGWmsGSDBVXvhAKQdqoGrSmxa\ncAWQ4OpUV5WFA5B2qAauKrFpwRVAgqtTXVUWDkDaoRq4qsSmBVcACa5OdVVZOIeAhK9RwNUp\nNi24WgESvtgHV+fYtOBqTUYCSHB1ik0LrqRBws9xQU8uDkj4OS64OsGmBVcACa5OdVVZOMeA\n1HkwASS4OsqmBVdrQOr8rASQ4OoomxZcrQCp66abRbiPBFfH2rTgak1GYmusGSDBVXvhAKQd\nqoGrSmxacAWQ4OpUV5WFA5B2qAauKrFpwRVAgqtTXVUWDkDaoRq4qsSmBVe7gDSqBJKwOwiq\nQ8hIcHWCq8rCqSsjjTUDJLhqLxyAtEM1cFWJTQuuABJcneqqsnAA0g7VwFUlNi24Akhwdaqr\nysIBSDtUA1eV2NThikgX/Y3UxDjvVgRIcHWmq8rCSZuQ+huLXiNEwYprQNLf7MP3keDqUcMp\ngWQz0oyjlT8QaWjCN2Th6jHDYWWkjSB1Z/5mw9Qlnc4H05mBkrZ17Hi4ajGc7DVSABLNVlyR\nkTgg7fi7dqRCVFESMeOFIDGR3wL7TPur/VeE6GYu9WInhOmUoYveTqX1UCfLhl1VFk7M5L9J\nRKb4j/Rr0rRicyBN7xGQ3Ke+3Zo9dofN8zSnE23qACmpacVWQKKxoOnyiOIJiUzSMuYr99gd\nNs/TnE60AUjCIJGjhKIWuWEVvqs1Ns/TnE60eUyQDr6P9FGLxoLMNJnlH60l3fQdZ4DUkKvK\nwjkGJK7GmoVBSspaknfrWc+v3GN32DxPczrRBiCxQaLkcBsHpN8nEelCXUVNxaQ7d2oDx7h9\nV5WF0zhI5laXK6xWgJTUnTt18zEm0dH4x2y5lYXTNkhknmJyA29WDYOUOT1IuxK2AUi+mgGJ\nZq3t3q5dZSCRGfIggLTNBiAxQSL9JF07XTvbWSOXSecm3pD94vRwTziP2XIrC6cukEaVQAqM\nyXuUiYJYiiANNiWQhLcsfO5qFq+zUeoTW7XGF1mXRHYWOk4lkGbmZ2Skz0Y0/NFnvxh1OyUj\nTbmD8qME/r3f1KPoEtdIej3Sg/r3VrPOBhnJVwNdu88F3c4AiWxPjNIEqEXjiJzru1l9Z0TD\n3/ii76apSevCsWEkO5HMahg2pPuq0e+AyrpaYwOQmgTpFl7cUPp5JHvvNwFSQgtPNCY/SiS/\nIJB4NH41i3DiNjFXdmVy1kkd0LpNDCc/zQ+Q7gWJdNEvR+M9C7IgzUxWgGQdZPptpIdj+gzW\nphpKExDaJF1NG+5Mk9racs0wTZ9EhBNxWE0qXg2iCidlkokYIG0FiZYH8OUodfRUqSan+Zda\nymZlRpq8ZJm9cTKS+zhOwHyDIjZmeazDOjPLAOBUgC2/TbOtyoVDuWiDzeawNq8IICVAIu/B\n1sR+N3s/AVJayuYukJauXoxSwY7vavKFLkYtQqZcDl1sUMJkfNkfnIruI5MCEn48qz5ewSyg\nRDCzE1qSgSnUPpuQyNaXqcTumZkNQEpnJIoe459Hqfaj3sbJcfZnrdt+IPWmQbiPXhQ0q+bm\neIwTYF1Nn0YsHEjkV7swGs0KIFE+i1hvuf4W2YoKeavgjFwSzUbs1eQLICVBols0I/1c0O2E\njMQGKagh1lxCm8DiWy0yr0FmXmlZTbFrF9mgpQUjI1mrVF3langgjRbR08OhIN33faTnBekH\nLRr+iNSELUbdeCD9qEXqZYtpXknZfK9Fwx+RmpimSC+/OZBSCvadvrzndO2yFnRLIfKnFg1/\ng1Sh5sgsZ1bjm5BO+1mQKJ7PjwTpzm/IngSS2k+VgJTSbR1IKSmb7wu6rQPpZk/vVOza9cs+\n5i9WNBZkCqObAyklVc/fRjQWZAojZfOPEZF6qfIf+sdpsU3xxAaQAJKyEQLpGycyL/IWxkCi\nJWq/lLQWpIQCkBIaTP7VUpipcpr51+o0kNzv2lUs8kpoJ5H7CcLnknRGmut5HimBK2GbFlwB\nJLg61VVl4dQFEgQ9rwASBAlI8D4SBD2vnnB8BYLkBZAgSEAACYIEBJAgSEAACYIEBJAgSEAA\nCYIEJAjSFYKeTAAJggQEkCBIQAAJggQEkCBIQAAJggQEkCBIQAAJggQEkCBIQAAJggQEkCBI\nQABpky7BW8xgUmF91tI1WtZQjJQdx2JpavO2b0ZDAkibpNtQBqRr0uCSWlGgASbr3QGk4sY/\nhQDSJl2mxlJuSxELgPRIAkib5IE09eAcV2GuchbWUpWXa7DMWyU0NobBTPBhsIbv/GLiDB0u\n6w6CsLV4m2XL5XbEI3kmkgDSJl3sed62V1der1cfpEvk/RKu7VZZGAfWl9iH82qvQTAzh4GP\nRBDeiSEAae49UlVY2TMIIG3SAqTp7xI21uuinS4aYFhnmMnClRM1RT/0gpk5jK0Rp3kWbOKE\nEIsEIAEkrhxFZnQuA9LlEvaJrl5z80a+1oDk9ycv/ozzugIkb4Ax5mK+2mW5HUEkAAkgcaWb\ni5dT/N7d1V/sWpWXw7zmFl4j8UC6zD+crR7261gZaV6Le0VDuobVzvABSACJp3tAinWJfFs+\nSNHmKwuSBxRAygkgbZJLJsEpPApHAFC0S+Stkmblcg0u9xdDhWahH5/3ScRRKoiLX5sH0mW5\nWjRMgASQuAqanX9d4Fqdu/CYjU/bYWp/7auhYDH8ffWb66ymWPVeGKbl+w5jdSeGv2dQLAff\nZ9NeJNz92L4AUn0qNr9T2ucdTp+II4BUoQBSgwJIFarUAE9ooPf00p6JI4AEQRICSBAkIIAE\nQQICSBAkIIAEQQICSBAkoF1AusUUX7qLzdZqSBfjH+n5fVytsHlMV5WFc3c1ACki0mXvmNrL\n1Qqbx3RVWTgASbIa8pMRAaSzbVpwBZA8/axF6hUWowRd3WHzmK4qCwcgSVTzc0GCru6weUxX\nlYUDkCSqAUjHu6osHIAkUQ1AOt5VZeFUDBLpoic1NRbymyFTDUA63lVl4dQLksWHykNgZ+8N\ngHS8q8rCqQukQKQLIpred/IjoBJIZ8cHtaC9u3aEjLTN5jFdVRZOXRkp8EC60H/ZiySAtH81\nlbmqLJxWQCJkpLttHtNVZeFUCNJXLTIF2WKU6GbIVAOQjndVWTgVg5SS6GbIVAOQjndVWTgA\nSaIagHS8q8rCAUgS1QCk411VFg5AkqgGIB3vqrJwngEk/YyEsqE7tpRhA5COd1VZOIeC1E1l\n1y3fdgSJ3PB5/oE9gNSSq8rCORIkTc70Ct/2BwkZ6cFcVRbOgSB1/ZkgTRDRHVvKsAFIx7uq\nLJzju3YJkH5SGq1KILHd2QCHbKQfet3pwdcSSPt4hR5LMiCNGhFFRhK2eUxXlYVTTUYSB+mj\nFZEpPpJb+lFwbwCk411VFs4zgJSQ4N4ASMe7qiwcgCSxNwDS8a4qC+d4kI66jwSQHttVZeEc\nClJRY80ASdjmMV1VFk7jINH4xdnxZuv8qQWA9NiuKguncZBu6V/aBkiP7aqycJoHiW7T4z8E\nkHaupjJXlYXzECAhIx1RTWWuKgundZDoBpAOqqYyV5WFA5Ak9gZAOt5VZeHUBdKoEkjK5rMR\njQWpF312GkyKIAmGXAJJ0BX0sDojI30u6IaM9OiuKgunrow01gyQhG0e01Vl4QAkib0BkI53\nVVk4AElib0iDlH5e456QW2hO+9i04AogeRIH6cb7yXNeyC00p31sWnAFkDwJg6QTEkWe17gn\n5Baa0z42LbgCSJ6kQUo/QXhPyC00p31sWnAFkDxJd+38X+Kj9eGsNzm9Oe1j04IrgOQJGel4\nV5WFA5Ak9oYQSN8ZEQWFETec9SanN6d9bFpwdT9I3fTt8k1fNX9wkBLihrPe5PTmtI9NC642\ngGTL+3/8BCCtCLmF5rSPTQuu7gapc28AKRRAErZpwdX9IOme3QykdT9ZXAKpb/Lp7xJIghFD\n9emOjLT5d+2QkVaE3MJ5eR+bFlzdDVIPkFLVACRhmxZcASRPAOl4V5WFkzVx/zNyeX/9bpDQ\ntUtWA5CEbSpxRbkb7PdnJImfLAZIK0KupDmdYFOPK5oKkgQpo7FmgASQ2gsnb0JjEX2aHyB5\nAkjHu6osHGSklTsMIFXiqrJwTrhGAkipagCSsM3Jrv4zItIFjVNG04qPBRLdpvFJuusLQC2D\nRLc2fx6isnCyICU0rfhQII3f7bY92dV7rGGQ7JZTZsvpxoQNIPl6QpDsb/EXOXo0kLwtT246\nCzZuNGe37gNdnQfSqBJIyqYEUr/2oVW1EUT3bk4JpISrua8SSHdEVhZny0mZmALiqgTSzPyx\nMhLdc+pZk5G8XuS8o1RrRkr/75w7ojk7TRzo6qm7dnTPHlvVtSPncObsVJAIIEm7eh6Qfrci\n9SI9YcXdY+tBit7llgdpHITsI0MEP1qRetnCaFZNgyCpje7vPDEu6imOaAKkrLh77D6QFkPt\n60GKUzIzoUhz+rEgZfO9FamXLYyYO+ccGxp3TnlMn/FIAufHnADSOSDRVM3s6KwGicrHmOId\n1nUgxbUMhnPqPhSkRe95tSvy74ysrAYg7QDSSysa/gbpSSNVzVqQiHGypKNAItapm2RgY0DL\nAoBRDTLSLiCNtyUXWgVSXKqalSARo2unPuwjT2vskJE4LY55ei8ZUNnXZFJ4UIURDumdnI8o\n3iwAUhKkxF4/CSTdTnLHmBJB7wESMVNAGSRGzqJCPVQ2uXFCJtb5If45QEqDVFNGuiWO8QtP\nNBbkL3qhbE7KSBNIeRNdT8kkVs+fnoimN39ZrJpYyP94IjKF06KaCjLSqd+QbTAj/RCIhj8K\nltxCkGJS1Zx5jcTquBUUr+fPghKuFvX8UxAz4iNBOvc3G5oHaanboSB964lIvchf9G1sB/ax\nPRjYlB/BVx9H6gFIAElV0zZIMalqvvFFw98gf1Fkf8Z28i+eVBVT4enGA+lvXzT8EQWLlE3L\nILlfWq1aeGrzELW2l0WahXRGmut5ns2CK2GbFlwBJLg61VVl4QAkuGrTVWXh1AUSBD2vBO8j\nQdDzqrURFgiqUgAJggQEkCBIQAAJggQEkCBIQAAJggQEkCBIQIIgXSHoyQSQIEhAAAmCBASQ\nIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQatRlkNxKw+Jybev9Qb4AUn2a\neOC1bGuVXmllRdBdAkj16RK8sWxzKwGkIwSQqtNlNnlRf2P3TGUd3YFTMxevO+dzEDHx65iW\neYbXC6vzB+UEkKpTDKQRjMtiiTNOrjTNh3X46xoDgLRNAKk6RTPSdVYE7/mVLqw6ANI2AaTq\nlAfpMvXHRECa1QVtEECqTuWMNP8kv1I+I80rhu4TQKpPbgCOD1JmJYB0hABSfXK3hMwwQPka\nabbS6mskDDZsFECqUW5U2wxdXw0zdmz7aq5zYivNgYqChOFvQQEkCBIQQIIgAQEkCBIQQIIg\nAQEkCBIQQIIgAQEkCBIQQIIgAQEkCBLQLiDdjGgqaCyI9DIztVSfWL7SRqgauKrEpgVXu4JE\nplDkkJ60U5KbsUs1cFWJTQuuDgFp/OsBElzdZ9OCqz1BIlOQ7d95LIluxi7VwFUlNi242g+k\nr8OlEE3FV/X6Ok3YWdHN2KUauKrEpgVXu4A06mtBwu4gqA6JZ6SCRM8Hu1QDV5XYtOAKIMHV\nqa4qCwcg7VANXFVi04IrgARXp7qqLJx9Qeq6jvkGkOBK3qYFVxyQuunFeANIcLWDTQuuWBkJ\nIMHVmTYtuJIG6SelcY0SSFl3ENSqsiB1PTISXJ1l04IrgARXp7qqLJydQeo8mAASXB1s04Ir\nFkidn5UAElwdbNOCKw5IXTfdJcJ9JLg6xaYFV6yMtFZjzQAJrtoLpy6QRpVAEnYHQXUIGQmu\nTnBVWTh1ZaSxZoAEV+2FA5B2qAauKrFpwRVAgqtTXVUWzs4g6RtJ5VFwgARX8jYtuGKB1Lk7\nsrghC1eH27TgigNS5x4RAkhwdbxNC65YGak3vbfSs6v4GgX09MJDq3B1gqvKwjlksAEgwdUp\nNi24AkhwdaqrysI55BoJIMHVKTYtuFqTkfA1Crg6xaYFVzyQVmqsGSDBVXvhAKQdqoGrSmxa\ncLULSKNKIAm7g6A6hIwEVye4qiycujLSWDNAgqv2wgFIO1QDV5XYtOAKIMHVqa4qC2dnkHAf\nCa5OtGnBFQukDk82wNWJNi244oDU7fqIEJErxjVJz56wN+DqcFeVhZMy8Vsp+bN2RU5GWgHS\n6u8jkfpzxfCyUxBUibwGSuFs1DapHTMSjX+qID1Ddpn0aWUHG7g6wOZ8V+Raqeo30W3RSk8H\nSSdIunnR0QwkImekNsPN3r3DHucYN+6qsnCyXbuwle7btduakWikhBYXSTRtjLPOXUhVsOPh\nStDmfFfktbuJoeoyEi3yUKxrR7eg02dm799hj3OMG3dVWTg5kGKFW5EP0g73kT4PItIFjVPD\nu142KNyQACRawLZqhz3OMW7cVWXhxEz+G0SUKAZNK7JAWqmxZi5IOZlNodvN7/S5WSd32WRH\n0WnZQ1y1Uxs4xu27qiycFEg5TSs2A9LNH9nzl5ppmmgi/wrKN1m9Uxs4xu27qiycukAaVQJJ\n2ZRAGkw+KtFH80YUzA7S0RO5jTDD/LgbBQmoBNLMvNKM9LGk6axBbhTiZgb6cwnpQU6W7buq\nLJy6MtJY87kgkR6gPGPHw5WwDUA6BSS69d6SDTu1gWPcvqvKwjkEJPl/6yIE0u+DiMZSTbjJ\n3yet26lkXmr0j6apVTt+J5vHdFVZOMeAZEupG7KCIOW0aqeOI3+Ue2Jp5bF5kOZ0os2DgdS5\ntwcGiYI7vuQ/GrKmmh1sHtNVZeEcApL8v3UpgdTr4e+cBpsSSKUt8+Q/Jz/+eaPqa+TWo6kg\nO0QPNaYSSDNzVkYSftauvoykH5igW/hgIoU2riDTFwyvo2h2f3hZCS+clSYNpoDKwjlq1O7h\nQbrdll07ijxEYQz6JCZBNRq2pM8GmtOJNgCpMZB+HkXmFRaDrCFZPpL3fkkXxBqzaKA5nWjz\nYCA9ftfu54KMHUX4oHll5Bne/IJ9ANebNNhyKwvnqPtIpbfnACkczrMXVZ6o3EMsh+PqJ/+u\n1mM9iltZOEd17Xgaa35YkChEgxYPUXw3iGgs1QSZ2WnZd99ZQ7L1UW95CSKy5HiuFveHyRSZ\nn2Fy6xkgc18yAUi+ANIOIL0cRKRepKd08XKSqua7gow73bD99EYhkkGPUI9ZTFa+Cd38AUK/\nwsCGHLOp8RHjqI8CG3rrKWljlWm5luVef80sU9HTgjSqBJKyKYHUH3sfqQTSYPKyIFVNCSTr\nb7pj5e442dtYfWBii8SvQAUf+xXObWZe5kfc/R7a9Iq1idmvp939w2kUhB0JeLztZm6+kb0h\ntzSy1SVttqoE0jwkOc8jonVmJH0aVSdde31jxcxIOalquBnJ6xWOfTK6Lc/wdLOJww0Vzvt/\n1rA8iOi6dlGbyYMd1J9b+GMnfXoAxeXIWHfVr4fsIYjYhJeauXBMEo7a2ESeSX42TpNnfRN0\n7ZYgkd33venueDoDJN3Weq/JzFrKsi3NGoJZRh5n87ZCrrYkJc5HESS66e5ftOF69WRatx91\nHCQyLTzJrOvspm30chUyeQsWJi7smQFAil4j0bT3ezJTTieAZA5gBKQXSqRfL4hMoRe8mDWU\noL0tmor7OA3SzZywMybe6T3ZcG9sINXyPuXJOzkkWXMf95bMeMSWyiSPZNvGrFkApBhIwcGZ\nHcEDQfpBiXSp2q6eo2nZDzcNUkaqmh+VyBREel5VOE4qm++VSL0omBrnBs12DRuARKP0rTj1\npCzsMj0eEXVGuvG7LJxylU1+FLaIWTyHgtTMfSTSpbnU8PfY0SBldFsBUkbK5vuCBpNvJxFN\nb9OL9OwgVc03k4jUayhdMWnRMokMbP4J/hctIlWEU6PCQ5Vs3R4Bt7yNqymT/OY1+EZHgtTM\nkw324MS6788OUlKqmm8KmrXuaSfb3W31S0mDzZ+TaCwoKEapev6eRDS96Sk9O2gWjpeRIiBR\nCBIBpDRIv45SZ1BVTjN2ahBAEgDpf5OIbGFnR60DKSkPpKSUzT+TiMbSTNE/RoPJv5OI1Iv0\n1FSMOg0k930kCHpKSWekuZ7nkRK4ErZpwRVAgqtTXVUWDkCCqzZdVRZOXSBFxblyErKBq3Zc\nVRaOQDWC95HucS9pA1ftuKosnNNB2uxe0gau2nFVWTgACa7adFVZOA2ABEFPIYAEQQICSBAk\nIIAEQQICSBAkIIAEQQICSCeqdDf7ccXZcimbY7Q3SMVHH7SZkDeZag7ToTunKlVH0taK9gVp\nwIhH0kOCxNh0qZ3D2cvMc9pBKgXDeI6TVQ9XW3fgziCJWZaf6uM5ZNTT8Ww4sRy2VTI2rK0q\n2HTMekrBdGIkHbOTdwXJ/NB+xr/33wBLNUmcw7iuBMJhGEltVcmo00XmSDCPA2ujmAgclJMk\nd3JmB+4OUlc4E3aatPwhNk0hV1G+GltZV27dRRNeOEUjoa0qu5raQJfbrq645RbHoqdCNCbi\n7UAy9o5U0+kKO3BHkDp+a8plLW+fM7omRZDy55WeeQCL4bAalM7YWVflreK46vpiX6kr7Rxd\nQSGz2ca2sRtimnZp/5VJKkWj3RV2clfYgfuB5EXGapX5UyFjR5Sq6c15J29SPFnmz+zGphAL\n21URNoYrmwFyO7m8c7yclA+nuHc4/QLGUS/X05XPrcymo4M6IyNZr5wrDtYZjGNR4jHfmsaC\nc1XHaCuFQ2M8FW1sdfe6Mnsn54uxczg46k8LKaLcLzB1bKRN7+RCJcweRr6qfa+RumKrdCfl\ndI+ifHbyWlvUzGuRxZZbPMnZppBVoR10K1zlKiruPkYszqRwrIo4cjpbnNRnPi9l64yNy57b\nd3Lxw343kFbkIv+VNGE123Q13Osszv5knE6Zwx4FX6YJ5FtUOVtzclbJxO4YjitWQi/3uDZm\ndNdwGDs5e8RYx3MfkOzmFfdoEZI1CaDweckmAC5vUDr/s0nKfFa6vPXdFUzKNgUTd/LnkZT/\nvJj6NASFXVRoFx1nw5lXhuXjuVfXrnwBN3XZSmd3XgLoBdrbdNop926yh9h6KbsqH7xsOMwc\ny9msNVuedcUIh5Ed3bbnbIrtgrNVvQGSgWxBu10jMS6SGWf3vmyy6lS5oRq3PYWL9mJT4UTc\n+Q6jBo7ZjXuHFw6bpNIYgs42eaPCQWc0HdZWmcyXP+2xmteew9+ZnWrPA6Uh2c0njCkxs1J8\n4dgxWlJvo83kEc4pbrqKKOVqZlMpN3/OHejiRQ0jHJNlc1Ydpw8y1cUYN8qLcyeD18He9YZs\n7t6eOXkVh2R5J4zcLUJezir3S1gkdYWRSns+Lg+QFROJPkds3CxOOH3RxPDBHWzOZtp8rjFr\nl08znH5BtuWUj6fVWd9H6sr7gnU2Led4Tj2sMxOromI4LidtcsS8K8DZrHLD7UyDyppkr8jt\nR/ZMEgvXHlDGMHxBjHGjrnR+7RjH0+i0L/bZnJT+tHhSMafKTDVdcATT1RR7N8VYnJN8xOWW\nwkqPfTlkhg1vgKzLE2n3cbb1d97xTHBkmzYjPWbinWpijJ7kt8oEyzoXnfgN2ey1kdvfjASQ\nHtnqnFmhGs4Qe4kk256KbY5xpyX/uSkyCYCzWeXujf48E9J0sIonveL5n3XAXbwbsqMXanHU\nz1ZY0olfNc93TrVJLNJTTAAABYlJREFU/tgUThjdYiJuxRiFty7z4RQ6FLwzHIekIrF9X96s\nNeFkr/oKrNkKChePfSn19eX02NsTSF7lcyxvkMHozN9sSCaS6cPiSaXYEtzOynjiXGZxZLNj\ncSwpn0dsVdlaTJcs76nYB8qGE7grAlC4VVVIEp1nkc59/vFKR8sbr87nK7s93GZR44+f+Km5\ncDrlXGrkSeMMpbLEarmlvv2qpp1tmKVEwgjHfl5Mj6UcwBha6jkNl3OwGPUwRuCZATnVCFLQ\nZ0ufCUu9mzJInpfNHHGuEgo51g+H4Sx3lBnXYsVmwgyHdYOts1HlKmLU0/XFg8XqFhTOQq6i\nbDieqgRJK3/4CqB5NRR6UpsRchHlzsvlw+ei5Z1OM2MNvF2TdeWdkDl7qGDDqqKYz4unmGI/\n3W4O7wT8ECCVxoAYR8f2vKMfmoq2k+TdjMx2Iwt9e3Pe5p5OM+nGK+8Lpzf9Xs7dyOzBKl/t\nhpZ3O9JVME/ApVzcr2sYlYJUvJlcbimuouQnbCBLTmavqEnhEtgAUgqnDECpDtOwC10/HRGr\nbWe7kD3/dLUNWZONCj3R8nDcA4GUF+vw8qrZXEfv05hs4pzD15caktd55PX98j6KjdsMWWeN\nihI5VTHcmARa8tYxnvnhnqY9tQiSPlUKVCTRqev9/Z7JRyz8GYMVnNNpjqTOTTC6SZvkiJY4\nWnlPdhQ328c0sRRPaKvPII2CxHsQoVyTQKeO0bBtc9oSke07Fngs9f0681bkRCAXMTPxZrn6\nMzvQiVHh2o1vDCTdHsWOjUS/pRCMP8rGrDG5nHPdXto7Ky4Atu0cc+4Q6oiXXZUH9H07YTUF\nUsfs3ayqctvqpkj26Vy4m1z5d/5Llulw+n4dSIVLsWw13nXG7ldIpe6stdsvkrZA0sUB5zim\nSlelnfmdj+2PTpROuPbKkdH3y9WzNE2769Ntc90DNlvFuivc70lSSyDpFnDkAcrKnQJLDW7V\nPfJkTYW2wvwG4z1X0lFvpU5k4Y7OHir7242k5kDi9G6OUccbSDUDBBIO8wmJfVNMZty/K12S\nH95r2HjneJNaAynXmzhcjJ5U1wmGnPPkbukfsHc67a3g6sgDdXZ3vzWQ/PfzxTh0ohk0f5vp\nsD1jLsc23RZ7MLUEkn+RdK5sBKxHEQ5p392BJOnBE85p5PxjdZDaAknkMllCbJKOvOA+iCTu\nN+eeS02BVLq6PVBlkkw2OiRic4PtkOujigZO61FjINWiUpNlP0IpFI7ncm9XZhQSIAUCSPeo\nwAfrEUrhWA7rQx42NNiWANI9Kt4atVPHpIhDL1rAUEwA6R5NIOWujhiPUIoFc9xFC//Lrk8n\ngLRaXYkRe8VyWEAHXbQcvWEtCSCtlb3Yzj3OwH1YZ2ss7K+qbfYUFtBcAGmtOncnpWy5cyhr\nvqq20ZUrQFJMAGmFdGtiXpAcdFOnzz+DJ+XIegNHUQGkFeJ/rfCwGy1H5QfzdBbuHyUEkNiy\nEFXVmg7JezU+MFyZABJb7nnnqlrTAddHhw0LNiyAtEK1PDIb6pCbvl1tmbg2AaQ1Ouwh1Nr0\nlBu9SgCJK3NT/znb1HNu9QoBJKYO/I5elQJJeQEkhmweAklQQgCpLO9JTTQmKC6AxBGe1IQK\nAkgsgSQoL4BUkMYHJEFZAaS87G0jUATlBJBK6jr/DYKiAkhFVfh8HVSdAFJZ1fwsJVSvABJD\neFoTKgkgQZCAABIECQggQZCAABIECQggQZCAABIECQggQZCAABIECQggQZCAABIECQggQZCA\nABIECQggQZCAABIECQggQZCAABIECQggQZCAABIECQggQZCAABIECQggQZCAABIECQggQZCA\nABIECQggQZCAABIECQggQZCAABIECQggQZCAABIECej/u1PimvjPuN0AAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data.latest.long <- data.latest %>% filter(country!='World') %>% gather(key=type, value=count, -country)\n",
"\n",
"\n",
"data.latest.long %<>% mutate(type=recode_factor(type, confirmed='Total Confirmed', deaths='Total Deaths', death.rate='Death Rate (%)', confirmed.new='New Confirmed (compared with one day before)', deaths.new='New Deaths (compared with one day before)', remaining.confirmed='Current Confirmed'))\n",
"\n",
"## bar chart\n",
"data.latest.long %>% ggplot(aes(x=country, y=count, fill=country, group=country)) +\n",
" geom_bar(stat='identity') + \n",
" geom_text(aes(label=count, y=count),size=2, vjust=0) +\n",
" xlab('') + ylab('') +\n",
" labs(title=paste0('Top 20 Countries with Most Confirmed Cases - ', max.date.txt))+ scale_fill_discrete(name='Country', labels=aes(count)) +\n",
" theme(legend.title=element_blank(),\n",
" legend.position='none',\n",
" plot.title=element_text(size=11),axis.text=element_text(size=7), axis.text.x=element_text(angle=45, hjust=1)) + facet_wrap(~type, ncol=1, scales='free_y')\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"Transformation introduced infinite values in continuous x-axis\"Warning message:\n",
"\"Transformation introduced infinite values in continuous y-axis\""
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAATlBMVEUAAAAAAP8A/wAzMzNN\nTU1oaGh8fHyMjIyampqgIPCnp6eysrK9vb2+vr7Hx8fQ0NDZ2dnh4eHp6enr6+vw8PDy8vL/\nAAD/pQD//wD///+EA0IVAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2diVrjuhKE\nFW5YhhkGBjiA3/9Fb5TEiRdZa8nqdqq+M4QllZba/R/Zsi2bjqKoYpnWDaCoLYggURRABImi\nACJIFAUQQaIogAgSRQFEkCgKIIJEUQARJIoCiCBRFEBVQPr7aIx5fPW/6fPJmPvOJDcg0mFO\n2j/9C7Qi4TMpakkVKujf/lzED963PR7fURukg57Dn0aQqELhK+jfYTB6O7y+PZhHb2TjHyuW\nfSlve/9jzO/g2wgSVSh8Bd2bP+fvHoxv7y63eNNAOoL9GXobQaIKBa+g1+s49O+0V/Xvad8f\nqhwK9nlv7l/7Pa9zCR9K/f5gO3z/+/TXP4eXE46Hcc08nHl8fTD735ei/zwcYZ10fyDl35M9\nHnobdOzSs+fTkDT8pOf7w/dv3bkZxzcfQh5/M/8kigoLDtLjdBh6PR+q2F8fyvf8/QSkR3so\nc9gJO/727en4Ykn6OzjMeT5++3Qh5Mmcqv3NPB3+XYOcO3bp2b8j2sNP2l/efGnFKeRb5/gk\nigoLDtJ+siN12LP6/dl9Hih4twW7f+s+H4/TEIOdqgNfn8eX/avlZX96ubdmO0r8O+4jHj7o\n7wHL/WCf7TT2PR7q/97+7QDL/SXuYG/Nfjv8pN/HIer3qBWHkKd2zT+JosKCgzQ93Hg+z5o9\n2dfT/+g/z/Rc3m5OY8vlr6/9X55PVH5aZJ5Px16f+0uA++Nfj7t484OcCUjDTzr5ulErLu3i\n4RKVo+og3duR6KD3Qb3PQTr/+rPrRm+6v8xhX8r/MAD1H/16ZPS3HUIeD4c1f98X2jH9pIP+\nvf5+mLbi9DL/JIoKCw7S/WTX7lLQg//dL4I0fTGD8u8/6OHa5P2+//J+POy5/3P50wik/fiT\n7MRC/+0MpPknUVRYcJCehofp78UgDVpqxq+d3V/7ex6WDsPTcbrg9+ztdvrgcfxJfw7HZM9/\n390gzT+JosKqOf39vn9I3LWbvuwHJ23Pv/4cIGEPjx7MZT/s35Mde8Zv7064jT7pvj8k65wg\nTT+JosLCH1rvj9Ne3XEn6Tj7dryarZ9sOAWNBenpZP5np9MeTyj8GY4tj+ZpdPnE5MCoO5n3\n3fiTzgOPByTOOVCJwtfL2+kSoc/DgYit8cMe1PNp+vtfOkj/jid+/h2J/GP2f0+ng0axTnuS\np0nr5wFV57fZS4Ts8c7wk47XXpzn0Y+z8uP5jeknUVRYFf7H25+BPdfi+ITsKWgsSL35eBh0\nOpf7ezRW3J/P95xPo+6v023X2YXnYTPsD3/6v7ydZvNGIeefRFFh1diD+bRTy+apn3QYXyJ0\neYkCqXt/vlwt1P0dXSJ0+lV/Yd/b8cKeQfWfWbl/7o+NBp/0xzbo7Xg09+/+NKd3DTn7JIoK\ni4cCFAUQQaIogAgSRQFEkCgKIIJEUQARJIoCiCBRFEAEiaIAIkgUBRBBoiiACBJFAUSQKAog\ngkRRAKFB+liW729ibDpauenOjXzg8qwngtQ0HDsX8IHLs54IUtNw7FzABy7PeiJITcOxcwEf\nuDzriSA1DcfOBXzg8qwngtQ0HDsX8IHLs54IUtNw7FzABy7PeiJITcOxcwEfuDzriSA1DcfO\nBXzg8qwngtQ0HDsX8IHLs54IUtNw7FzABy7PeiJITcOxcwEfuDzriSA1DcfOBXzg8qwngtQ0\nHDsX8IHLs54IUtNw7FzABy7PeiJITcOxcwEfuDzriSA1DcfOBXzg8qwngtQ0HDsX8IHLs54I\nUtNw7FzABy7PeiJITcOxcwEfuDzriSA1DcfOBXzg8qwngtQ0HDsX8IHLs54IUtNw7FzABy7P\neiJITcOxcwEfuDzriSA1DcfOBXzg8qwngtQ0HDsX8IHLs54IUtNw7FzABy7PeiJITcOxcwEf\nuDzriSA1DcfOBXzg8qwngtQ0HDsX8IHLs54IUtNw7FzABy7PeiJITcOxcwEfuDzriSA1DcfO\nBXzg8qwngtQ0HDsX8IHLs54I0lrhdqtGg/oIUlgEaa1wBCnHBy7PeiJIK4VzcrSVzkFtBMkK\nn9eN1BpByvKBy7OeCNJK4QhSlg9cnvVEkFYKR5CyfODyrCeCtE44N0cb6RzWRpCs8HndRq0R\npDwfuDzriSCtE44g5fnA5VlPBGmVcAscbaNzYBtBssLndRO1RpAyfeDyrCeCtEo4gpTpA5dn\nPRGkNcItcbSJzqFtBMkKn9ct1BpByvWBy7OeCNIa4QhSrg9cnvVEkNYIR5ByfeDyrCeCtEK4\nRY620Dm4jSBZ4fO6gVojSNk+cHnWE0FaIRxByvaBy7OeCFL9cMscbaBzeBtBssLnVX+tEaR8\nH7g864kg1Q9HkPJ94PKsJ4JUPZyHI/2dq2AjSFb4vKqvNYJU4AOXZz0RpOrhCFKBD1ye9USQ\nqocjSAU+cHnWE0GqHc7HkfrO1bARJCt8XrXXGkEq8YHLs54IUu1wBKnEBy7PeiJIlcN5OdLe\nuSo2gmSFz6vyWiNIRT5wedYTQaocjiAV+cDlWU8EqW44P0fKO1fHRpCs8HnVXWsEqcwHLs96\nIkh1wxGkMh+4POuJINUNR5DKfODyrCeCVDVcgCPdnatkI0hW+LyqrjWCVOgDl2c9EaSq4QhS\noQ9cnvVEkGqGC3GkunO1bATJCp9XzbVGkEp94PKsJ4JUMxxBKvWBy7OeCFLNcASp1Acuz3oi\nSBXDBTnS3LlqNoJkhc+r4lojSMU+cHnWE0GqGI4gFfvA5VlPBKleuDBHijtXz0aQrPB51Vtr\nBKncBy7PeiJI9cIRpHIfuDzriSDVC0eQyn3g8qwnglQtXARHejtX0UaQrPB5VVtrBCnPRpCs\n8HlVW2sEKc9GkKzwedVaazEcqe1cTRtBssLnVWutESSCVCB8XrXWGkEiSAXC51VrrREkglQg\nfF6V1loUR1o7V9VGkKzweVVaawSJIJUIn1eltUaQCFKJ8HnVWWtxHCntXF0bQbLC51VnrREk\nglQkfF511hpBIkhFwudVZ60RJIJUJHxeVdZaJEc6O1fZRpCs8HlVWWsEKd9GkKzweVVZawQp\n30aQrPB51VhrsRyp7FxtG0GywudVY60RpAIbQaJ67Vo3gFpbHJFqhOOIVGDjiGSFz6vCWovm\nSGPnqtsIkhU+rwprjSCV2AiSFT6vCmuNIJXYCJIVPq8Ka40gldgIkhU+r/pqLZ4jhZ2rbyNI\nVvi86qs1glRkI0hW+LzqqzWCVGQjSFb4vOqrNYJUZCNIVvi8qqu1BI70dW4FG0GywudVXa0R\npDIbQbLC51VdrRGkMhtBssLnVV2tEaQyG0GywudVXa0RpDIbQbLC51VbraVwpK5za9gIkhU+\nr9pqjSAV2giSFT6v2mqNIBXaCJIVPq/aao0gFdoIkhU+r8pqLYkjbZ1bxUaQrPB5VVZrBKnU\nRpCs8HlVVmsEqdRGkKzweVVWawSp1EaQrPB5VVZrBKnURpCs8HnVVWtpHCnr3Do2gmSFz6uu\nWiNIxTaCZIXPq65aI0jFNoJkhc+rrlojSMU2gmSFz6uuWiNIxTaCZIXPq6paS+RIV+dWshEk\nK3xeVdUaQSq3ESQrfF5V1RpBKrcRJCt8XlXVGkEqtxEkK3xeNdVaKkeqOreWjSBZ4fOqqdYI\nEsBGkKzwedVUawQJYCNIVvi8aqo1ggSwESQrfF411RpBAtgIkhU+r4pqLZkjTZ1bzRYL0n8L\nAld0pAgSMBxBQtgIkhU+r4pqjSAhbATJCp9XRbVGkBA2gmSFz6ueWkvnSFHn1rMRJCt8XvXU\nGkGC2AiSFT6vemqNIEFsBMkKn1c9tUaQIDaCZIXPq55aI0gQGw4kc/lqrMClPhZBgoXL4EhP\n51a0VQDJDH6sJIIEC0eQMDaCZIXPq5paI0gYWwJIZi4PSFVFkGDhCBLGVukYCVzoUxEkVLgc\njtR0bk1bDZDsCycb1rQRpOa2SiDxGGlVG0FqbuNkgxU+r1pqjSCBbMATsmbwjyCtassOl8WR\nls6takNe2dBPMvCErJpaI0goGy8RssLnVUmtESSUjSBZ4fOqpNYIEspGkKzweVVSawQJZSNI\nVvi86qi1PI6UdI4ghUWQMD6CBLMRJCt8XnXUGkGC2QiSFT6vOmqNIMFsBMkKn1cVtbbbcucI\nUoQIEsRHkHA2gmSFz6uKWiNIOBtBssLnVUWtESScjSBZ4fOqodZ2W+4cQYoRQUL4CBLQRpCs\n8HnVUGsECWjDgTQubt5GsaaNIDW3QUEyo58qiiAhfAQJaCNIVvi8Kqi13ZY7t7otAaTdXGOQ\nTvfFnr8ObzuHiyABfAQJaYOPSFeKCNJqNoLU3FZl1+5CUa0dPIIE8BEkpA0P0mnlE4K0pi3H\nt8sPJ79z69sq7toRpNVsBKm5rQZI5jI4get9GAsqfF7l1xpBgtqwIJ1m7TqCpKDWCBLUVvUS\nIYK0ki3DtysIJ75zDWwEyQqfV/G1RpCwtoogVVy2mCAV+wgS1lZ1RKomglTsI0hYG0GywudV\neq3tSsJJ71wLG0GywudVeq0RJLCNIFnh8yq91ggS2EaQrPB5FV5ru6JwwjvXxEaQrPB5FV5r\nBAltI0hW+LwKrzWChLYRJCt8XmXXWr/m9yY718ZGkKzweZVdawQJbiNIVvi8yq41ggS3AUFy\nP8y8ynVCBKnId3mayxY718iGA8lUKXG3CFKRjyDhbQTJCp9X0bVGkPA2NEjdaV2u4+t1XS70\nheAEqcR3fU7fBjvXypYA0tdc02Ok8+vovvPBrecwEaQSH0GqYMPO2vVjUF/ptRa4I0glPoJU\nwYae/h6uJWQMQVrHluQbPIF5e51rZqsw2WCmLwSpto0gNbfVAOmCD0eklWwEqbmtwgnZ66wd\nR6SVbASpua3CJUIrnEoiSPm+AUc+2xcmGsCmcBN4So0g5ae1vo0gNbcRJCt8XuXWWhxIPo4E\nd66drQJIK4ggZfuGHBEknI0gWeHzKrbW4kDyciS3cw1tBMkKn1extUaQ6tgIkhU+r1JrbcQR\nQcLZCJIVPq9Say0OJD9HYjvX0kaQrPB5lVprBKmSjSBZ4fMqtNbGHBEknI0gWeHzKrTW4kAK\ncCS1c01tBMkKn1ehtUaQatkIkhU+rzJrbcLRgi3EkdDOtbVtF6T96etBvteT8HmVWWsEqZoN\nCZJzXbsqighz5uX8Zen1LHxeZdYaQapmA4JkIkscoHCUfUeQZppy5LYFOZLZucY2HEhm9FJX\n0bt2BGkoglTPlgDS3VzOde2uK9qZ892y43XupksNZQgI0v+sshuiS7uYN33VbsVtK3pE6q7L\nngz/jX8rCKSj8P+Dkvg/7dmA5LSFBySRnWttw+7aXVbgGi3Lda380W8LdgIJUo6PIFW01ThG\nMiOe5uvcESS0DQhSBEciO9faVgWk6y8G/2bjFEGC2aJ8c44IEs5WY/rbvWt3PT4qnygnSBk+\nglTTVuWErDETiM67dt3qIPHKhquiQIrhSGLnmtvaXSJUG6QU4fMqsNYIUk0bQbLC51VerTk4\nmtuiOBLYufa2ViCVXZVHkNJ9BKmqrd2IVCKClO4jSFVtBMkKn1dxtebiaGaL40he5wTYCJIV\nPq/iao0g1bURJCt8XsXVGkGqayNIVvi8Sqs1J0dTWyRH4jonwUaQrPB5lVZrBKmyjSBZ4fMq\nrdZiQIrlSFznJNgIkhU+r9JqjSBVthEkK3xehdWamyOChLMRJCt8XoXVWgxI0RxJ65wIGxKk\n88XfK6yCQpASfQSptg0IUvmaJtEiSGm+BY5GtniOhHVOhg0Hkum/EqTVbQSpuQ0NUjdccMuM\nFuICiiCl+QhSdVsCSN9zuUG6LLgFWXrLJYKU5FviaGhL4EhW54TYqoxIF5C6SlMPBCnJR5Dq\n21YBCb66PkFK8hGk+rZKkw1m8h1HpKq2cpBSOJLVOSG2StPfU5A4IlW1+X2LHBEknK3SCdnp\nrh1HpKq2YpCSOBLVOSk2XiJkhc+rpFojSCvYCJIVPq+Cam2ZI4KEsxEkK3xeBdVaBEhpHEnq\nnBgbQbLC51VQrRGkNWwEyQqfVzm15uGotyVyJKhzcmwEyQqfVzm1RpBWsREkK3xe5dQaQVrF\nRpCs8HmVU2thkFI5EtQ5OTaCZIXPq5ha83FEkHA2gmSFz6uYWguDlMyRnM4JshEkK3xexdQa\nQVrHRpCs8HmVUmtejggSzkaQrPB5lVJrYZDSORLTOUk2gmSFz6uUWiNIK9lwIBkDvxF2UQQp\n0ufnyNoyOJLSOVE2IEjg4vaJIEX6CNJaNoJkhc+rkFojSGvZ8CCZ063lp7tjR+va4fb8CFKk\nLwhSDkdSOifKlgDSr7lmx0jdZTG7+bp2wDVQCFKcL8ARQcLZaoxIl9cBQR1BqmjLBimLIyGd\nk2WrBNJpdJqAhJvVI0hxPoK0mq0OSOOdOfxiqwQpyhfiiCDhbNVAmoxIPEaqacsFKY8jGZ0T\nZqu2azdZsri7vgBEkKJ8BGk9Gy8RssLnVUSthUD60tw5YTaCZIXPq4RaCw9IijsnzUaQrPB5\nlVBrBGlFG0GywudVQq0F9+w0d06ajSBZ4fMqoNYiphr0dk6cjSBZ4fMqoNbCA5LizomzESQr\nfF4F1BpBWtNGkKzweRVQawRpTRtBssLntX2tRXCkt3PybATJCp/X9rVGkFa1ESQrfF7b11oA\npK+CcO07J89GkKzweW1eazEDktrOCbQRJCt8XpvXGkEiSGERpKAvZs9ObecE2nAgcRWhdra5\nL2pA0to5iTaCZIXPa+taixqQtHZOoo0gWeHz2rrWCJJckH7mmoDkWNKujghSyEeQ5IIUHpHm\nS9pVEkEK+OI4Uto5kTYsSONvCdJaNoLU3IYHabSkXSURpIDPD9JlzROdnRNpg4OEX3vLIYLk\n90UOSDo7J9NWAySOSK1rLXJA0tk5mbYau3YckVrXGkFa3cZLhKzweRUM0mBVSJWdk2kjSFb4\nvDattdgBSWXnhNoIkhU+r3JBGi5TrLFzQm0EyQqfV4IEsylspafUCFJ+Wuvbxr5ojjR2TqqN\nIFnh80qQYDaFrfSUGkHKT2t9WzxI4we5KOycVBtBssLnlSDBbApb6Sk1gpSf1vq2kS+eI4Wd\nE2sjSFb4vBIkmE1hKz2lRpDy01rfFgvS9FGX+jon1kaQrPB5bbcVEwYkfZ2TayNIVvi8igRp\n9uxldZ2Ta8OBZCYlPi92M3lx4hDFCEFa9KUMSOo6J9hWD6R5vZvFNy57Ct6UIHxeJYI040hd\n5wTbWoG0iAJBKvMRpDa2CiCdV+Iy/cJcZnC/X/9GM35v/9fLy3VFL+eqXgRpyZfEkbbOSbYl\ngPQylxsk098uO17DwVxBcr139HL51r2qF0Fa8hGkRrYqI5IbpMEsg+O9iy8EKcGXxpGyzom2\n1QdptjzXZZQhSCgbQWpuW2VE6mbfxhCUANKffde9mf3vJHoGwudVHEgujpR1TrQNeELWjP95\ndu266TsmB0ddIkh/Dub3/WHkyyUJn9c2WzFxQNLVOdk25JUN/fzcCI7rrJ0ZgdSNVu26Ttdd\nLfEg3Zu3w78//8w+jZ+L8HmVBpKTI12dk22Tc4lQynHP5L0H7l7NfZf/AAx8XptsxdQBSVXn\nhNtkgLQw8HjfP9DevD+Zf/YoKTM+Pq/CQHJzpKpzwm0yQOpM2mAyefPvg31vP+Q5Mzw+rwQJ\nZlPYSk+p1d+1S9GUumezfz0MTLkcbQSkZI40dU66bRsglQqfV4IEsylspafUCFJ+Wuvbjr50\njhR1TrxtGyA9740xJvFAayB8XgkSzKawlZ5SEw3SszEEaRmkRY4UdU68bRMg7bMvaTgLn9f1\nt2LGgKSnc/JtmwApeyTqhc+rIJCWOdLTOfm2TYD0bD7LPg+f19W3Ys6ApKZzCmybAKl7fHgv\n+jx8XgkSzKawlZ5SkwuSGSrz8/B5lQOShyM1nVNgI0hW+LyuvRWzBiQtndNgA4I0q+TFsnb+\noeCi1WLh8yoGJB9HWjqnwYYDyQy+BiqeIIFteUdIWjqnr5WeUhMNUj8Q7m/2NgqC1NqWAJLd\nc/tv/DoHaXhj63llu36X77JaXTf66Xz/bDZIex4j5Z1Eyg9HkAI+T6nFHSP1Rd4TM1365Lo2\nw+ynJAiG7/0z4OhPwmcMhc/rurbdoo8grWTDztoNxpwrL51nFZT5L6PEKxvGIkjNbejpb+MC\n6bL6yWi5k/m6QdHiZMNIu0WfnyMVndPYSk+pJUw2zEAaTUOM0QGB9Fx4jKRcu8W/fK3YCipG\nKbN2kx258V+uL7gR6dZvo1gckQIDkorOaWylp9TiJhum0w2da9au37UbEpQIweS9e/Pvwbx/\nPpi3hM8YCp/XNW27RR9BWs2m/xKh7gjlb/PafZqHzM/D55UgwWwKW+kpNekgvdqp7xvdtVsE\nKcSRhs6tHu6WQXo0f9/Nffd2myDtFn0EaT3bJkCyBD3Yw6ynzM/D55UgwWwKW+kpNdEgda/3\nXfeUv9DqRkEKcqSgc+uHu2mQSoXP63q23aKPIK1oI0hW+LwKACnMkfzONQh32yD9ebSHSf9y\nPw+fV4IEsylspafURIP0eX88oWtu8YTsbtFHkNa0bQKkJ/NszyH9vcUTsosgRXAkvnMtwt0y\nSMZc/2UJn1eCBLMpbKWn1AhSflpr2naLPoK0qm0TIJ137Z5v8ITsIkgxHEnvXJNwtwzS53nd\nhn3ueqv4vBIkmE1hKz2lFgTJcUNQvdvsZp/8+96Y++fsFcDxeV3J1i96MvNFcSS8c23CtQbJ\nUd4rglQofF4JEsymsJWeUiNI+WmtaCNIUmwJIO0O+m/86gDpcvO4Gd7+ev0DROPP+fxtL/1+\nzF2Lq9ML0mU5u6kvjiPZnWsUTsqINFuwLnddBp9Gn/PaLxG5z72wgSCliSAFfJ5SSwap685j\n0gAm2B7Z8IPejXmyF9m9PZrs543h80qQYDaFrfSUWhZI/XLE18WKQRp+0PXs0VP2DUn4vK5i\nuy5UPPFFciS6c63CSQRpvD9XCaS96c8e2dvN84TPK0GC2RS20lNqhSAN1rdDaPhJg3NXt3aJ\n0BJIsRyJ7lyrcFJAGq9FPNzFI0hg2+ARFASptW3NS4QIEtZGkATZCJIVPq8tQYrmSHLnmoUT\nDxJyhfsxSDf6oLHhw8UIUmvbmiMSTgTpgyDJsukHCSF8XhuCFM+R4M61C0eQCoTPa33b6LGx\nBKm1jSBZ4fPaDqQEjuR2rmE4glQgfF4JEsymsJWeUiNI+WmtYhtxRJCa2wiSFT6vzUBK4Uhs\n51qGI0gFwueVIMFsClvpKTW5IN3meaQxR1dfEkdSO9c0HEEiSB8EqZkNB9K0ko3jO5S4a0eQ\nhNmAIE1KvN4aQgRpytHFl8aR0M61DXfTID3f2q4dQZJmqwHSYPkt041WEzJla91PYl30fHPH\nSARJmi0BpK+D/hu/Oo+RrneZz5blMtffFGni35t/D+b98+FmHjQ25aj3JXIks3ONw8kZkUYg\nzb6DrG838R/Y/G1eu8+bedAYQRJnqwHSZdWGFUF6NX9u6A7ZBZBSOZLZucbhBIHUDb9bA6RH\n89cuxfV2KyDNOCJIzW21d+1mY1MNkCxBdvnvW3nQGEGSZ6txQtYxa+dYpKtEU//rvV1nNXuh\n1Y2AlMyRyM61DtccpMiah+i2T8jOOSJIzW1VQUIMPosfjBQ+rwQJZlPYSk+p5Y1I+adIA587\nDXN63e8zPw+f1wYgpXMksXPNw4kEqZaGIO3NQJmfh89rRZuDI4LU3KYfpD8DjnIf2ofP6/og\nZXAksHPtw90sSB3g4j18XgkSzKawlZ5SEw1SsfB5rWdzcUSQmtu2AdLn870x98+5T77cAkg5\nHMnrnIBwtwzS+3nCYf/ufntQ+LwSJJhNYSs9pSYapCfzcEDo/eEWLhFyckSQmts2AVI/2XAL\n098LIGVxJK5zEsIRJIJUIZwAm8JWekpNNEg3tGvn5ihvx05c50SEu2WQbmiygSAJteFAmq4i\n5Ch452+WfunT7U5/EyShNiBIZlzi7ku/64BUKnxeK9mWOJLVSqxNYSs9pRYzIo3RWQskxAXm\n+LwSJJhNYSs9pXZg5u6g/8avbpBON8Oe7ogd3zNrRuve9X8b/DJSBGksgtTcBj1Gmq/PMP7N\nwk/Dm9DjdKsgLR4hiWol2KawlZ5SywSpc/3G9cs0GgjSSASpvQ07a3da62S20Mn0N8OfRvuD\nsRqDdDs39rlB+hLWSrBNYSs9pZYC0vDnbv4b3zAVqRsFaXnuW1Ir0TaFrfSUWhxInWuocbzM\n38ZjpAgbQZJrq3FC9jwrN9tvu/402afjrF2UzXMyVlAr4TaFrfSUWhikNUWQBiJIEmwEyQqf\nV4IEsylspafU5IKEED6vFWy+y+zktBJvU9hKT6kRpPy0gmwESbKNIFnh87oaSF+1womxCW2l\n8fg8pUaQ0oS3eW+gENPKCjaZrZxyRJCsyvNa30aQBNnMjCOCZFWa1xVs/jv6pLSyhk1gK+cY\nEaSjCvO6ho0gybG5OCJIVmV5XcXmm2qQ08oaNnGtdHJEkKyK8rqKLbBWg5BWVrFJa6WbI4Jk\nVZLXdWz+AUlKK6vYZLXSMc0w93lKjSCliSDBbKJauYQRFKTQBdy48r85kEKrcMloZR2bpFYu\ncwQEKXhLEUHKtgUGJCGtrGMT1EoPRziQzOCrWwQp1xZcFlJEKyvZ5LTSxxEapON3k+W2+ntn\nk+/fWxRBshosryqilZVsYlrp5SgBpO+D/hu/OkG6rHiyfH95qQiSFUFa07Y4XefweUotZUTq\nHKuaZK1xsqgbAym84LeEVtayyWhlAKNau3ZLi291BUv9DESQPsYL50toZS2biFYGOaow2eBb\ndYu7djk2gtTaFuaowvT3bLmt+U+lui2QwhxJaGU1m4BWRnBU44TsdLmt8apbHJFSbQSpsS2G\nI14iZJWW19S0FtoiOBLQynq21q0MTdc5fJ5SIyMSzH8AAB3lSURBVEhpIkgwW+NWxmFEkI5K\nyGtGWgttBKmlLZYjgmQVn9ectJbZYjhq38qKtqatjOaIIFlF5zUrrWU2gtSwlfEcESSr2Lzm\npbXIZjn6Nfvt9CnmrVtZ09aulZHTDPNwnlIjSGkiSDBbs1amYESQjorMT2Zai2wEqVUr0zgi\nSFaR+clMa4nteIQ0A2nKUetWVrU1amUiRwTJKjI/mWktsRGkRq1M5YggWUXmJzOtJTYnSDOO\nWreyqq1JK5M5IkhWkfnJTGuB7TT3TZBWtiVN1znCeUqNIOWntcAWOSDpIEINSBkYEaSjIvOT\nmdZ8W+yApIMILSBlcQQFaZ0lhNAf1hEk0ba1W5nHERIk561G6Jqv8qGR+clMa77NCZKDIx1E\n6AApkyOCZBWZn8y0ZtvOl9kRpPVsxiBa6Sm1BJAG65z0XzrkonbdbYPk4kgHEQpAMphWekrt\nwMyvg/4bvy6t2TBd7mS0xB1ABKlGOKG2FcOZ/GjAEckB0uS3MARuA6T+BgqCtJLNFETDgWRO\nmuzajfFC7dvdMEhOjnQQIR0kUxINCFL/1b3EaqNdu73V+bVzvJ4UmZ/MtGbaLnf0EaRVbKYo\nGgwkc3l1LwmJW9SuSwJp8LKfv54VmZ/MtGbanCC5OdJBhGiQLlcFyQHpuoTdYKJhuMRduQgS\nPpxY2yrhrmePWoO0qqJB2g9fdYF0XathANICRzqIEAzS4CwsQXLpcojUdQsg/c+qQhOLteu/\n+TX45VeDhtyAqlw14JZWkM5fNI9IEQOSjqFF7Ig0uiqII9KiVIKUtGengwipII2vriNIi9oM\nSIsc6SBCJkjTm/gIkktqd+0Gy0ISpJq22cXeBMml/eCfepCWOdJBhESQ5jdNECSnlq5okH5l\nA0FaJZzj5iOCVKDI/GSmNcM2XPC7B8nDkQ4i5IHkuomPIBUoMj+Zac2wEaQVwrnXCiJIBYrM\nT2ZaM2wOkHwc6SBCGEgL95QTpAJF5iczrem20aNcCFIV29LaDASpQJH5yUxrus0BkpcjHUSI\nAmlxjROCVKDI/GSmNd1GkGqHW14rqDlICfeSm8VbZSMJ2ThIyXt2OoiQA5JvSWIhIEVx5H5n\nwg20tweSnyMdRIgBybt0nQyQoiqcIPlt46fGEiR0OP8SkPVB+jnov/HrFKQzIudVT/pl7aYL\n2l2/H66P0q+AFz+m4YTPKxikAEc6iJABUuhJExJGpOtQY0b3mE/Hmp6rxRXwQiJIwHDSbdhw\nwRWJBYDkxGNhEmK4VJfb4NOmQRpzdAQpxJEOIiSAFF7Zuz1I/WAyGmAu66C4DokIkstGkKqF\ni3mAWHuQ+i/z/bkJHpeBiyC5bHOQghzpIKI5SFEPmpABUtSCdgTJZ5twRJBg4eIe2CIEpOtU\n3XC6zpgRIpcTsteX8exESLcFUpgjHUQ0BinywUfNQYoQrP4JEiycfBsmXPTzlQlSgfB5zbZN\nOfr4FcGRDiJaghT/HD4NIMFEkFDhFNgQ4RKeZ0mQCoTPKxCkquEU2MrDRe/WFUQjSFb4vOba\n8gYkHUS0Aint8coEqUD4vOJAqhpOg600XOJjyglSgfB5zbTNOCJIheGSdusKohEkK3xeUSB9\nEaSicKkYEaQi4fNKkGC2knDpHBGkEuHzmmfbTW1f3LUrCJe8W1cQjSBZ4fNKkGC27HA5GBGk\nIuHzigHpi5MN+b48jghSifB5zbLtpjaClO8zDVvpKbUwSGZ5ka25Ckm4EZDsuViClOU7HB6p\nBclR4osFT5BcIkgon8kPR5AKhM9rjm03sR0vDiJIGT5TEE4QSJfluMzwXr3+5r7rXX/5IkiA\ncFpsyb7zrLdYkF4O+m/86r3V3Hm7+eC28gLdBEgJHOkgYiWQ+tk6sSDFTjY4lmCYrYVCkOba\nfRAkgO8y660WpOE3yyBd9/cKdAsgnW6fIEhpvsHFDNsGibt2S9pNbAQpwzc8CbtdkMz4UKlA\nNwDS+X4+gpTiG13MoB6k4dL4152566wdRySnCFKxb3xRkFaQIsRVhJa1G9v6G8wJUrRveq33\nRkECnD0afxhS+LwSJJgt0je7RnWjIHXxF+JFfBbsk07C57UQpESOdBBRFaT5td5bBQmp7YG0\nG9sIUprPdQsfQQpr6yClcqSDiHogOW89IkhhbQ6kfq0GgpTjc9/CR5DC2jhIlzUhCVKEb2ll\nBoIU1tZAuiweNAYpmiMdRNQBafGOcoIU1rZBSh+QdBBRBaTllRkIUlgbA+m6mt0IpHiOdBBR\nAyTPCicEKaxNg5QxIOkgAg+Sd+E6ghTWtkAaLK9KkFJ8/gW3CFJYWwYphyMdRKBBCixcR5DC\n2hRIw/W+CVK0L7gesVaQPOvald83Mf9AqPB5zQYpiyMdREBBCq+jqhYkb4kTpCWNHkBBkCJ9\nEesRE6SwtgvS9UGXBGnZF/WYCbEgGcc/93Jc5nKX7GWpE4K0pAWQkjjSQQQMpLjl8cWCFHuM\nNFzQDrXayUQbAmn8aLHMAUkHESiQIh8zoRak/quZ/oIgebQAUhpHOojAgBT99LBtgNTP4Jnh\nL2HaDkgTji42grTgi3/q0SZAGv4jSB6NQPr6IEgBX8LTw7YCkiFIYU137HpbIkc6iCgv0aSH\nwqoFabj2d798HWft/JoMSATJ60t7mKVWkNbUVkCazTScbakc6SCitEQTHwpLkMLaJEhfHwTJ\n40varSsIR5AKhM9rlG0+9X2yJXOkg4iiEk1/RjlBCmuLIH1dbQRp5kvniCBFaBsgOc7FHm3p\nHOkgIr9Ek3frCsIRpALh85oM0tfFlsGRDiKySzQHI4IUo02A5Lo4iCA5lMcRQYrQ9kD6uthy\nONJBRKbNqGglQbLC5zVsc16t2uVxpIOILNvh8EhBKz8I0lH4vCaC1F/1TZAmMuuGy7cRJCt8\nXoM29+0TXR5HOmotw2bWDVdgI0hW+LymgZR7G9JiuO88W2a0WrbzrLfwVjp8nlIjSPlpdQlz\nP99SuO9NgNTP1slupcvnKTWClJ9WlxYGJMRWjOdIdoleZr1Ft9Lp85RaGCRfcaMLXz1I7gHp\nF2QrRu/YiS7RwcUMglu54POUGkHKT6tDzgHpF2YrxnMkuESHJ2HltnLJ5yk1gpSf1rkWZxoI\n0kmjixnEtnLR5ym1AzM7x78JSP0tspeF7brBTbNAbRKkX/nRNgbS5BpVoa30+DylFjUiDVZr\nMOPfgAtfOUiLHBEkq+m1dTJb6fN5Si0apEGZE6QFESSfZteoimyl1+cptbhjpNHqJ2a0+glU\nukFa5ujjJy/ahkBy3HoksJUBn6fUoicbxgvbTcYolLYH0pmjmx+RXLdMyGtlyOcptaRjpM51\nqISUapCWB6QfyFaM50heiTpvPRLXyqDPU2oZu3bT3wC1OZDOHN04SAt3lAtrZYTPU2phkNaU\nZpB8HN02SEt3wspqZYzPU2oEKT+tYy2B9FMQbRMgLd5RLqqVUT5PqRGk/LSO5OXohkHyLBQk\nqJWRPk+pEaT8tI7kAOnKEWIrJnAkqER9C5zIaWWsz1NqBCk/rUMtDEj9+aNbBcm7UJCYVkb7\nPKVGkPLTOpR7QLqch71NkALrPwppZYLPU2oEKT+tA7kHpOv1DLcIUnAZVRGtTPJ5So0g5ae1\n18vCgDS4Luj2QIpYjVhAKxN9nlIjSPlp7fXiHpCG19eVb8UUjtqXaNSi3s1bmezzlBpByk/r\nWQsD0ug61dsCKXJtfIJUTUpBcg1I4+u9i7diEkdtSzT6ERMEqZq2A9LkvonbASnhSS0EqZo0\ngjTZsztzNFnIrnQrpnHUsETlPp68PUj9U81dAle+TpDmA9KUo1sBKe3BYTcGkvGVOEGagHTi\naLay6k2AlPr8PYI0/SNMCkFyDEhzjm4BpPTHWN4kSOMbzfslucZrdZVjoB6kE0dwkBI5alCi\nOU+D3RpIX45/k2Okvsgvq9ud7zMf3nWOuPNcI0jTAcnF0dZBynqo8uZAipi1u6wPaRxLOIxe\nyqQPpOmA9GPnvdEgpXK0cq3lYXSTIJ1R6UG6rsU1+6lMCkEaD0jH00eOZ7hsGCST+yzYWwPp\nMtkwGpE618pctw7SiaObAsmORgSpS5u1m/zjrt10z26Ro7KtmMzRerVW8gjLWwPpekJ2uNpq\n/4fLTzcK0oij6x3moGjCQSp7hOXNgbSiVIP0M1pcFRJNNEiXOQaC1BGkkrROOPpYHpA2CFL5\nk/cIUj0pBunnwzMgbQ6k0Yw3QeoIUklaj1d+n/Xz4RuQNgYS5oFhBKme0CBV1suu/+6n675O\n3/2CR/mGf2KZAJeCbVDbBgn/P6iR7bJnZ+e9fQNS0f8O0wekmv/Txj3niCNSPWkD6fx6PH90\nEyA5rwYiSB1BKknreUD6GXC0bZCwj2chSPWkDKTj1/PqDN4BaRMgLV6bSpA6glSS1iNII45q\ngJTBUY1awz9VgiDVkyqQjnt2/WpB/gFJPUjeOyUIUkeQCtJqB6QxR1sFqc5i+ASpnrSBdFm9\nLjAgFWzFHI6wtVZrMXyCVE+aQJpztEmQ6i2Gf2sgeVcRAks3SMscqQWp5mL4NwfS5V6k+lIE\n0u4lYUBSClLdxfBvDiTMPXtRUgTSgKPwgJS/FbM4wtRa7cXwNwfSneOfE6TRAnajJe5QqGkC\nKYWj7K343Qyk+ovhbw6k8DHS5b/zAnauJe5uDKQBR1VByrMV11rSClsEqcsCqRssKNRXv8Ew\noAik668iOFIGUuJCdQSpi521m68L2YNkLvt7iMJXA9JuHZC+W9Ra8nqPBKkrBmm8k1csNSAl\ncqQIpIxlUwlSF30eyYxBGi1vB5we1wLSzxSkAEdqQMpafZggdYkLRF5m6IZL3HW3B9LPYM8u\nakBSAlLmIt4EqcNdInRbIKUOSCpAyl7EmyB1BCknrbMBKciRApAKFvEmSB0KJNTCMipA+vlY\nC6Tv1YrGlCziTZA6Xv2dkdaMAUk4SP2xEUEK+DylRpBS0zockOJmGrKjrQPSdYqBIAV84PKs\nJxUg7T7GIEVwJBik4UwdQQr4wOVZTwpAmg1IMRzlRfuuXzTjCW+CFPCBy7OeNICUMyAJBWl6\n3oggBXzg8qwn+SDlDUhZ0b4zfbG2+elXghTwgcuznsSD9NNNBqQ4jnKifWf6Im2uqxgIUsAH\nLs96UgVSwoAkDiT3xUAEKeADl2c9SQfpsGOXNSBlRPvO9MXYlq6pI0gBH7g860k4SD8fH+MB\nKZaj9Gjfmb4I2/KlqQQp4AOXZz2JB2nXrQNSf2csvmh8V3gTpIAPXJ71JBskOyB1WRyJAcl/\nowRBCvjA5VlPokGyy52sBNJlqQZs0YTuNyJIAR+4POtJOki7jx6kNI4So12XPEEWTfi2PYIU\n8IHLs54kg3QckIZHSAkcpUUbLB2EK5qYu18JUsAHLs96Eg7S7rLqSeKAlBRtuAQXqmjibiIn\nSAEfuDzrSTBI5wHpbEsckFKijZaywxRN7FoMBCngA5dnPckGyQ5IF5CSOEqINl4SElE08Uua\nEKSAD1ye9SQXpNOA1IOUOiDFR5ssrVpeNCkrAxGkgA9cnvUkGqTjEVIPUhpH0dGmSxSXFk3a\nAlsEKeADl2c9iQWpH5BOtuQBqRFIqevUEaSAD1ye9SQcpJePHqREjmKjzdbMLyma9OUeCVLA\nBy7PepIK0mVAqgvS/NkT+UWTs2oqQQr4wOVZTzpASucoLprjGS65RZO3+DBBCvjA5VlPgkE6\nn4xVAVLmGt4EKeQDl2c9CQXpOiCdQErmKCaa8ymXOVv/gJG+EhVrI0hWoLyeBqQepIwBKRxt\n4WGxyVvfHEcjfSUq1kaQrEB5HVxm12UNSKFoi89cTtz6bdYeJkjiJBOkwYB0sOUMSP5onkeX\nJ239VmsPEyRxkgzSy9mWMyD5onkwSmplu7WHCZI4SQXpMiDBQfJilNDKlmsPEyRxEgnSkKOP\nLoujpWgBjGJbadquPUyQxEkmSJajGiAFMYprpeOskb4SFWsjSFaIvI44ytuxc0aLwCimlc6T\nr/pKVKyNIFkh8voz2LGDgfQdhVG4lQvXMOgrUbE2gmSFyKu9rKF0QJpEi6Ro5ptodmgUZ8uM\nBrcpbCW4POtJIEhjjnLOIU2ixQ5GU99UcpZMJUjiJA+knQVpsGNXuhVTKPrwtFLSkqkESZzk\ngHR3etl9DEE6DEhFWzFpMBr4ZpK1ZCpBEid5IE04KtiK6RR9LLRS2pKpBEmcxIA0HJBGi6vm\nbsUcij5crVyeYfDaMqPVtClsJbg860k4SL8yN0fWYHTUJFwURXNbZrTKNoWtBJdnPYkB6aSd\nnbQbr/adsTm+859OPvLFUvShsUTF2giSVWFehwPSeQmu1M1xHoyKt2ICRfnhCFLABy7PepIF\nkmNAStwcl126sq2YRlF+OIIU8IHLs57kgtSvCZmwOYZHRgVbMZmi/HAEKeADl2c9SQHpONfg\n4ihhcyCeKmEcFN3dhX36SlSsjSBZZeb1VKplIJU/VcK4lgOKwUhjiYq1ESSrzLwuD0jRm6P0\nqRLnoWjqi8JIY4mKtREkq8y82nK1N0/0IA2ezxe5OcoWw7/u0I19ccNRcrhGNoWtBJdnPQkB\nyeo4IF1B6q/6jtscJYvhm6VVTKIx0liiYm0EySo/rweOvhwDUtzmyF8Mfzq5MPDFY6SxRMXa\nCJJVfl53B3x+5gNS1ObIXcPbMUV38SUMR7HhWtsUthJcnvUkBqSlASlmc+St4e0+XXT2pWGk\nsUTF2giSVV5e75YHpIjN4bw+NWRbOuna9Q1Kk74SFWsjSFZ5eb07Ttl9/DgGpPDmyFkMf/na\nBetLHY6C4YTYFLYSXJ71JAKku48pSIOFGgKbY+l+CZ/Nv/hCBkYaS1SsjSBZZeXVNyAFNsfi\nbUfLNv+VdFkYaSxRsTaCZJWTV++A5N8c6U+VCGGkotYIkjhJAOnE0ZdrpsFv890G67QFruu2\no5GKWiNI4iQCpBNHpwFpypHH5r2b3GEL3B1x2qlTUWsESZwEgeTmaNGW+niW0E1Gd/5wAamw\nKWwluDzrSQBIdyeOjiB9RdsSH88SxKifY1BRawRJnNqDdJ6yu3A0XaLYaQsvEjSyBW95vU7V\nqag1giROAkA6cdTfiDRb6tthi1lra2ALYzSY8lZRawRJnJqDNBmQ5kvmz2xxS9b1tvACDOMz\nRypqjSCJU3OQeo5+Fjia2mJXfjzaYpYxmZyAVVFrBEmchID09bLE0diW8pyjqMWAZhcyqKg1\ngiROzUE6DUhfP86JhqktGiPXYkAOOa4HUlFrBEmcZIDk4Whgix2OjhBFbEXnZXUqao0giVNj\nkM5TDV/LHF1skRj1Q1FwKy5cnaqi1giSOLUF6czRy8/xRKwPpDiMBjt0ga24eJG3ilojSOIk\nASQvR0dbFEbjwyLvVvTcK6Gi1giSODUF6XT/xMvp8ctLD13uYp51NJ9cWG7JnfeWIxW1RpDE\nqfVkw85ytHyAFDUYOWfolloSunFPRa0RJHFqDNKFIzdIdjDyb47Fee6F6yiC97+qqDWCJE6t\nQbL7daMB6YpF+IlhvpNFzjnCrTxWgiCJU1uQXl4+Jjt2PRnfwSeGBU65Oo7ItvNYCYIkTg1B\nuvt4OS73PQTpxMZoesH1kREXLsyibemxEgRJnNqB5OLoqO/Ag47irv4Z2u78E3X+cBuyKWwl\nuDzrqSlIHw6QZrN0I1vkNXQDWwpEjlZuyqawleDyrKdmIDk5Mo7J7qst6dmu1pYK0byV27Ip\nbCW4POup4THSDKTvb8+q9qlPSO4yIBqE26RNYSvB5VlP7UCydyAdZL89gnTA6IjKbm6L36E7\nK2cocrdyUzaFrQSXZz21AunlZffxdToVe+TosE/nZiUXok3X2qY7R5CsIvPzcn7Q5VG/jjMM\nc1yMcT5m3KPBSLTpWtt05wiSVVx+vu4+dubrDNKvy42vg72660AUuzkmu3ObrrVNd44gWcXl\n5240IJ052p04Mma8NxexOe4cx0SbrrVNd44gWcXl52739XEekL77ue/dDKGYzeFiKMIW1crN\n2RS2Elye9dQEpJed6QekniOz8z+L0qFFhvy2gFTU2qY7R5CsYvJzXKHhyNH393HKbhGixc0R\nnt/edK1tunMEySqcHzvx/XF87rKdq/tlzG565si/OfwD0aItVipqbdOdI0hWwfy8fBz3635e\nfln9mANK8WlNONG66VrbdOcIklUwPy93X18/P79evj8OY9FhYPoVupf8aLu7ixyInFsjRSpq\nbdOdI0hWwfzc/Xx9fx926A57dN9Hjrw5vUsnyLE1VvCpsClsJbg866kcpP1B158C+fm5M19f\nO7tz57rQe6QeINYazKawlcXluZaKQdpfvhzlzc/Py8vX18vL8Wqgw3DkXjhoOgix1mA2ha0s\nLc/VtCZIxwkGO1lnIfn5+Rn/eWkvjrUGsylsZWl5rqYVQfr5Pl7tfXdAaHfl5i50GMRag9kU\ntrK0PFcTEKT/WXneeffy8uvKTWlcipKkVY+Riv//VN+mo5Wb7tzNj0hH4fPKWoPZFLaytDxX\nE0FqGo6dC/hKy3M1EaSm4di5gK+0PFcTQWoajp0L+ErLczWtfGVDYVrr23S0ctOdu1WQxsLn\nlbUGsylsJbg864kgNQ3HzgV84PKsJ4LUNBw7F/CBy7OeCFLTcOxcwAcuz3oiSE3DsXMBH7g8\n64kgNQ3HzgV84PKsJ4LUNBw7F/CBy7OeCFLTcOxcwAcuz3oiSE3DsXMBH7g864kgNQ3HzgV8\n4PKsJ4LUNBw7F/CBy7OeCFLTcOxcwAcuz3oiSE3DsXMBH7g864kgNQ3HzgV84PKsJ4LUNBw7\nF/CBy7OeCFLTcOxcwAcuz3oiSE3DsXMBH7g864kgNQ3HzgV84PKsJ4LUNBw7F/CBy7OeCFLT\ncOxcwAcuz3oiSE3DsXMBH7g864kgNQ3HzgV84PKsJ4LUNBw7F/CBy7OeCFLTcOxcwAcuz3oi\nSE3DsXMBH7g864kgNQ3HzgV84PKsJ4LUNBw7F/CBy7Oe0CB55Huan/Zo7JzecBgRJI3hNt05\nghQQa01ptI2Hw4ggaQy36c4RJIq6WREkigKIIFEUQASJogAiSBQFEEGiKIBWA2n88PMan74f\nRFl6xQS7hIx5xUVboYOxnaoQbrXNV0drgbS/fKn38dcoS6+YWNdP84RChTxX0DodjO0UONyq\nm6+SCFJ6qDVB2vcjUnd9IUgCtQ2Q9sPX6lti1RFp/EHr/J9ivc4NPq5bJ1wtbQSkfh/7HGV7\nIK3YwQYgrbr56mgjIJ2/bBektaKdPmW74appGyD1ITYLUv/d9ip7P/iGIIVFkIqi9d/V7+DK\nA+Da/5uopm2AtO6+QQOQVsZ2q+Eqajsg9f82C9IaHdyPY64Ybr3NV0cburIh5hUTbNWQa0bb\nx15ioDJcVfFaO4oCiCBRFEAEiaIAIkgUBRBBoiiACBJFAUSQKAoggkRRABEkigKIIGXKXDT8\n7Z/95E2DPz0Y8/B36ePeD3+9N5FbI/Z91HriJsmUG6RJiV9/fN+f3vyw8HH7+Wf5Yqe1laov\nbpICzQt6EaS9eXrvute9+RP7UUlxqdbiJinQpaDfn8wRlPOg8vZozP55+Ia/5vH4+mr2g7cf\n/v7+eHznaTiybzfm3/7Bfvd4sLzfm8fPw/s+reHzGOnh8GuCJE/cJAXqC/rzuGO2/zyD9Hra\nTXsegPRo3k7f/Bu+/fD3/emdQ5AezNPh64FF8/dw1HT44bzjd99bHwmSPHGTFKgv6Gd76PNw\nIefe/D0Qc6Ji8s7Z2x8+uz92lDq+4WQ5DWVPh1Hs8O1f+7vf9nfPdq/QWj8fCJI8cZMUqC/o\ne3PYT3u3Q8b5N++vvx+WQRq+/b3r+bl8c97ns18+T7+7P7rt3uHZyq0mTtwkBeoL+vR6Jeeh\nn4JzgzR9+wSky1sGvxt/IEGSJ26SAi2A9GTu/7y+j0C6HCN1bwRpk+ImKdDCrt3xy+cIpH7W\n7m3/NN8TDIJ0f9lK3LWTKm6SAi1MNpjD8PM5Pka6nkf6N3t7GKRn+96/1vXbzk5wskGguEkK\nNJv+tvPZtu5nx0j2jFA/Jz56e/8xXpBOBssgp7+lipukQLMTsqep7MNBknl4G4N0GI2e9v21\ndoMTsv3HeEE6Gh6OR1nvjzwhK1LcJBQFEEGiKIAIEkUBRJAoCiCCRFEAESSKAoggURRABImi\nACJIFAUQQaIogAgSRQFEkCgKoP8DgDrEmFdGYNAAAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAATlBMVEUAAAAAAP8A/wAzMzNN\nTU1oaGh8fHyMjIyampqgIPCnp6eysrK9vb2+vr7Hx8fQ0NDZ2dnh4eHp6enr6+vw8PDy8vL/\nAAD/pQD//wD///+EA0IVAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2diZrauBKF\nBZdOQhKyuQfw+7/o9SZbu0pSCWQ455tpusHoQFl/SirbsughCCqWePYHgKBXEECCIAYBJAhi\nEECCIAYBJAhiEECCIAYBJAhiEECCIAYBJAhiEECCIAZVAenXVyHE19/hjT6/CfHRi+QPQHyH\nmHX69jfyKRLahCCfKvSgv6elE38JbvZ12qI2SIO+x1sDSFCh+HvQ3yEZ/Rke/3wRX4POIpwr\n/O9L2ezfTyF+RDcDSFCh+HvQh/i5/PZFhEZ3uZ03DaQJ7M/YZgAJKhR7D/q95aG/86jq77eT\nnKoMHfb7SXz8liOvpQsPXf1jeNvw+4/51Z/Dw4zjkNfEl4XH31/E6cfa6T+HGdasj4GUv9/G\n+dAf5Yut3+z7nJLUlr5/DL//6ZePMW08WE7P2C1BUFzsIH0109DvZaoyPj103+V3A6Sv41Rm\nGIRNz/75Nj2MJP1Spjnfp1+/rYR8E3Nv/yO+Df9vJssXW7/Z3wlttaXTuvH6KWbLP72jJQiK\nix2kkzGQGkZWPz77z4GCf2OHPf3pP79OZQhlUDXw9Tk9nH6PvJzmh4/xzWOW+DuNEYeGfg1Y\nnpQx25z7vg79/2N8bYDlY/VVRmvjr2pLP6YU9UP7FIPl/LnsliAoLnaQzOnG96Vq9m18nP+h\n/1zoWTcXc25ZX/0tX/k+U/k5IvN9nnt9nlaDj+nVaYhnT3IMkNSW5vf12qdYPxemS1COqoP0\nMWaiQf+U/m6DtDz92ffaRh9rDXvt/kMCkk3/nhj9MaaQr8O05tc/z+cwWxr09/ePL+anmB/s\nliAoLnaQPoyh3dqhlX/uvSCZD0Lp/rKhL9tHPp3kj3/TtOfj5/qSBtJJb2ksLMhfLZDsliAo\nLnaQvqnT9H/FICmfVOiP/The+7WkpSE9TeWCH9bmY/ngq97Sz2FO9v3XPzdIdksQFFfN8ve/\n05fEoZ35cFIO2i5PfypIjNOjL2Idh/39NuYeffN+xk1r6UNOyXonSGZLEBQX/9T6NJW9+mmQ\nNFXfprPZZLFhNqWC9G1+89+xnPZ1RuGnmlu+im/a6RPGxKif33zq9ZaWxBMACTUHKFH8/eXP\nfIrQ5zARGfv4MIL6Ppe//6aD9Hc68PN3IvKnOP2aDwdpXvNIci5af1eoWjYbTxEa5ztqS9O5\nF0sdfarK6/UNsyUIiqvCP7zyCOzSF/UDsrMpFST55mkaNB/L/aHlio/leM9yGPW0ldu26sJ3\n9WOMf/yUr/yZq3mapd0SBMVVYwTzOZaWxTdZdNBPEVofSCD1/76vZwv1v7RThOan5Il9f6YT\ne5Tev7Dy8V3OjZSWfo4f6M80m/v7Mdf0NkurJQiKC1MBCGIQQIIgBgEkCGIQQIIgBgEkCGIQ\nQIIgBgEkCGIQQIIgBgEkCGIQQIIgBgEkCGIQQIIgBgEkCGIQN0idX6HXuASPF/Ng7p71BJDg\n0bIHc/esJ4AEj5Y9mLtnPQEkeLTswdw96wkgwaNlD+buWU8ACR4tezB3z3oCSPBo2YO5e9YT\nQIJHyx7M3bOeABI8WvZg7p71BJDg0bIHc/esJ4AEj5Y9mLtnPQEkeLTswdw96wkgwaNlD+bu\nWU8ACR4tezB3z3oCSPBo2YO5e9YTQIJHyx7M3bOeABI8WvZg7p71BJDg0bIHc/esJ4AEj5Y9\nmLtnPQEkeLTswdw96wkgwaNlD+buWU8ACR4tezB3z3oCSPBo2YO5e9YTQIJHyx7M3bOeABI8\nWvZg7p71BJDg0bIHc/esJ4AEj5Y9mLtnPQEkeLTswdw96wkgwaNlD+buWU8ACR4tezB3z3oC\nSPBo2YO5e9YTQIJHyx7M3bOeABI8WvZg7p71BJDg0bIHc/esJ4AEj+oeh4IG9iKABI/aHgUc\nASRfUCsLHg16AKQMxYJaWfBoz6OEI4DkCWptwaM9D4CUo0hQawsezXkUcQSQ3EGtLng05wGQ\nshQOanXBozWPMo4AkjOo9QWP1jwAUp6CQa0veLTmAZDyFAxqfcGjMY9CjgCSKyaFMSXFHR5t\neQCkTIViUhhTUtzh0ZRHKUcAyRWT0qBS4g6PpjwAUq5CMSkNKiXu8GjKAyDlKhST0qBS4g6P\npjwAUq5CMSkNKiXu8GjJ44AL+3IViklpUClxh0dLHgApW6GYlAaVEnd4tOQBkDSd5p+DQo+z\nQjEpDSol7vBoyOOANRtULbwsP3yPi0IxKQ0qJe7waMgDIKk69QAJHjk6zB7Xkjb4e3wlkYd2\nAAkeiQJIhogg/W9UlQ8J7VGH+eH63E/xKCEjwaOSDrNHUUJ6y4w0KRSToogS4w6PVjwOs0cZ\nRwDJFZOykNLiDo9WPACSJYAEj2TNZ9n1hRwBJFdMCmNKijs8GvEASLZwZgM8UrWc9g2QchWK\nSWFMSXGHRxseC0ilHAEkV0xKg0qJOzza8ABIhQrFpDSolLjDowkPyRHOtctVKCalQaXEHR5N\neACkUoViUhpUStzh0YLHOrADSLkKxaQ0qJS4w6MFD4BUrFBMSoNKiTs8GvDYKg0AKVehmJQG\nlRJ3eDTgAZDKFYpJaVApcYfH8z2U0jdAylUoJqVBpcQdHs/3AEgMCsWkNKiUuMPj6R7qsViA\nlKtQTEqDSok7PJ7uAZA4FIpJaVApcYfHsz20k4MAUq5CMSkNKiXu8Hi2xwzSlcmDuXvWE0CC\nB68AEotCMSkNKiXu8Hiyh8YRQMpWKCalQaXEHR5P9gBIPArFpDSolLjD47keOkcAKVuhmJQG\nlRJ3eDzXAyAxKRST0qBS4g6Pp3oYHAGkbIViUhpUStzh8VQPgMSlUExKg0qJOzye6WGt1ACQ\nchWKSWlQKXGHxzM9zIQEkLIViklpUClxh8cTPeylgwBSrkIxKQ0qJe7weKKHlZAAUrZCMSkN\nKiXu8Hieh2MtO4CUq1BMSoNKiTs8nucBkBgViklpUClxh8fTPFyLqwKkXIViUhpUStzh8TQP\ngMSpUExKg0qJOzye5mGXGgBSvkIxKQ0qJe7weJaHc9l8mofwv8TcPesJIMGDR66EBJCyFQjX\nDjsHPMhy38eF5BHgCCC5YkIJaqHg8SwPZ0ICSNkKxYQS1ELB41ke+SCFOAJIrpgQgloqeDzJ\nw80RQMpWKCaEoJYKHk/yAEjM7YViQghqqeDxHI/Defxp3zGW4BHkCCC5YhIParHg8RwPgASQ\n4FGuQzeC5LiFOUDKVSgm8aAWCx5P8SgAKcwRQHLFJBrUcsHjGR6HDiABJHgUawbJwVHcI8IR\nQMoJKoPg8QSPsfQNkJjbC8UkFlQGweMJHjNILo4AUrZCMYkFlUHweLzHdCw2E6QYRwApI6gc\ngsfjPWaQnBwBpGyFYhILGoPg8XCPUEICSNkKxSQWNAbB4+EeJSBFOQJI6UFlETwe7TGfreoZ\n2QGkbIViEo1aueDxaA+ANAsgwaNIC0hZHnGOAFJyUHkEjwd7LEs1ACSABI8SLRf0ZYFE4Agg\npQaVSfB4sAdAWgSQ4FEgeYU5QAJI8ChQCUgUjgBSYlC5BI+HeqxLngAkgASPfAGkVQAJHtmK\nchTyIHEEkNKCyiZ4PNIDIG0CSPDIVZwjgJStUExIkSsTPB7oUQQSjSOAlBRUPsHjcR7bKsUA\nCSDBI1uEhASQshWKCS10RYLHwzwoCcnvQeQIIKUElVHweJjHBFKEI4CUrZygMgoej/IgJSSv\nB5UjgJQQVE7B41EepIQEkLKVEVROweNBHrSEBJCylRFUTsHjQR60hOTzIHMEkOhBZRU8HuMR\nKX3fIh4AKapQTMjRyxc8HuMRSUgAqVihmJCjly94PMQjlpAiINE5AkiumNDDly14PMIjVmlY\nOQJIEOTXYfp57fuz+/Vb+O0v2eeQkeCRKnVgd3dtEMlICQnpfTNSKCYJ8csVPOp7LGtCTiA5\nOXoQSP95xNyjiQJI8EiUkpDcHEVASuEIILlikhLATMGjuoeSkDwcASQGhWKSEsBMwaOyx4XA\nEUBiUCgmKQHMFDwqeyggeTkKg5TEEUByxSQpgnmCR10PEkcAiUGhmCRFME/wqOuxgXT3n626\nceTwSOMIILlikhbCLMGjqofkCCBZAkjwoIuUkIIgJXJUBpJYf4pRzF1dF0CCB12X5fF6D12H\n1B5IQvmzkgASPMhaE1KQoxBIqRwBJFdMUoOYIXjU9JAJ6R68MFbhqDZIwlYApKoCSPAgawbp\nPha+80BK5ohxjsTc0U0BJHhQtXAUWVy1SZDGBxQbUuIOj3oeE0j32CrFAZDSOWIECXOkpLjD\no5rHVGq4x9cOahAkFBuS4w6Pah5jQhqnR5GE1BBI8/SoB0gZcYdHNY8FpOhidl6QMjgqPbNB\nFhlwQDY17vCo5aEkpP2A9DgBJHjQdMngSPPI4QgguWKSE8jUuMOjksfhMl84AZDcAkjwIGnh\nKFpq8IKUxRFAcsUkK5KJcYdHHY/DZeUIILkEkOBB0WE5zy6akAASj0IxyYpkYtzhUcVD4SgT\npDyOAJIrJnmhTIs7PKp40BMSQOJRKCZ5oUyLOzyqeNA58oCUyRFAcsUkM5ZJcYdHDY+EhASQ\neBSKSWYsk+IOjxoe9xkkCkdukHI5AkiumOQGMyXu8KjgcU9ISACJR6GY5AYzJe7w4Pe4HxIS\nEkDiUSgmucFMiTs8+D3uXSlI2RwBJFdMsqOZEHd4sHukJaSWQNI7Ny6jSIk7PLg97l3+yG7x\nyOeoGCSh/VVRAAkeQSVyBJCYFIpJfjjpcYcHr8e9KwepgKMISAdbOkjzdbHLT/Wyc3YBJHiE\nNCSkudSQxVFtkGgZaaMIIJHjDg9Wj8KENHmUcMQ2tFspqjXAA0jw8Gu8BukgE1J6qaEVkOaV\nTwBSStzhwekxJqSSkV0bIGkTJIBEizs8GD22hFQAUhFHXCCJNTkx93fVi1WhmBRFlBh3eDB6\nFCekBkCaq3Y9QEqMOzz4PKaEVApSGUfspwgBJGLc4cHnAZASBJDg4dM2shtAonDkAKmQI2aQ\nKi5bDJDg4VF6QmoepIoCSPDwaEpIEiQSRzZIpRwBJFdMSoNKiTs8uDyUhJQ9sgNI2QrFpDSo\nlLjDg8tDS0gAKSaABA+3WEZ2xd8j0NUAUkXBg8sjY2QHkBgViklpUClxhweTh5KQumt2qQEg\n5SoUk9KgUuIODyYPnpodQMpVKCalQaXEHR48HjNHC0j5tW+AlKtQTEqDSok7PHg80kd2zpId\nQMpVKCalQaXEHR48HvctIdFAsjlqACT3zcyrnCcEkODhUDJHnmNIzwVJVOnibgEkeDh0Hzkq\nT0gAKVuhmJQGlRJ3eHB4qBzlXT+xnNTQAkj9vC7X9Lity8V9IjhAgofUcf1tvvEyPSE5OHoI\nSFdb5hxpedSuO1cuPWcTQIKHrQkkeS+XhkEiVO1kDpI9vdYCdwAJHpbYOGoAJH0tISEAEi3u\n8Cj3OCSC5OKoCZDWYoMwHwBSLO7wKPY4TBlpvUlf2k1jpUTYg6xAV0sBacUHGYkYd3jkeshS\nw6HTQMrjqA2Q1gOyW9UOGYkYd3hkeqwlO86E9GyQavXyB1iEYlIaVErc4ZHpUSUhAaRshWJS\nGlRK3OGR56EkpBEkckIKcwSQshWKSWlQKXGHR5nHeEpDAkhujpoD6QECSPBQpSWk6MguxhFA\nylYoJqVBpcQdHkUezAkJIGUrFJPSoFLiDo8sD6XUMIC0JqQISFGOAFK2QjEpDSol7vDI8lhA\nmk76vhMT0i3AkQQTIOUqFJPSoFLiDo8cj6yE5OEIILEoFJPSoFLiDo8cD09CCoIU4gggFSsU\nk9KgUuIOjwIPjoSkcQSQnDrNPwe5HmeFYlIaVErc4ZHvkZSQAJKuBJAWbpYf5uOiUExKg0qJ\nOzzyPcyElAPSXLEDSAGdeoD00h56QsqcIgEkggDSi3rM/d48GMuQkJ4OknNduypiBOl/o5g/\nHvQIHccfh/HHvb8sz137/hx6z831pFDaqy4CSEL5UJWFjAQPmZCueqkhY2Qn1AY1j1wFumMc\nJKE91BVAgsfU7w8jPIUjO3lu0MNAOtpyrmu3rWgnlqtl9XXuzKWGMgSQ4DFJT0g7AYmWkfpt\n2RP1f/1ZgAQPDo8pIdFHdoEVuFSOGgBpXYFLW5Zr6/naswWDQIAEj1FT7bvwaGyTIPVL0lF5\nste5ewJIOLPhFT0MjrJAWq+eaBGk7QnlfytPPQgkikIxKQ0qJe7wSPYY+72dkF4BpK387R7a\nbfOj8kI5QHp7j6PkqKz47eLo2SBtB2SFMCBahnY9QIIHj4dMSGOtgTshPR2kNAEkeOR7yIR0\nLTwaC5BYFYpJaVApcYdHooeakEpqdk6OdgVS2Vl5AAkeS0Iij+zoCWlXIJUJIMHDUWrIT0gA\niUehmJQGlRJ3eKR7GCAxJiSAlK1QTEqDSok7PJI8tmNI2sgu/6wGgMSkUExKg0qJOzySPFaQ\ntilSWe0bIDEpFJPSoFLiDo8UD42jbWTHlpAAUrZCMSkNKiXu8EjxqJ2QAFK2QjEpDSol7vBI\n9JAcKSAVJCSAxKVQTEqDSok7PBI9ZKlhASkrIQEkgPTuHgZH0YSUNrIDSNkKxaQ0qJS4wyPN\no25CejpIy8nfD1gFBSC9r8dR4aijcRRJSK2BVL6mCVkA6X09VpBGflgSUmMgCfkTICXHHR5k\nbQnpWishNQFSry64JbSFuBgFkN7W4wEJqTZIN1tukNYFt1iW3nIJIL2xh5KQ7h1DQmo4I60g\n9ZVKDwDpjT1SSw2xhLQjkNhX1wdI7+uhcFQpITUBknCAhKFdLO7woHukgpSekFoqf5sgISMF\n4w4Pqo7sCak9kNQDsubQDhkpGHd4EHXcZkhXpoTUIEiPE0B6Uw8VpPF2LiNHBVeYL22aAki5\nCsWkNKiUuMODLAnSlJCiHGUlJICUrVBMSoNKiTs8qDpIj4oJCSBlKxST0qBS4g4PqlaQLgNI\nE0chkIK3ulwEkBgViklpUClxhwdVEiQSR5SEBJA4FYpJaVApcYcHRdNaDSkgZSYkgJStUExK\ng0qJOzwImu++PHtUTUgAKVuhmJQGlRJ3eBCkg3TlSUgAiVWhmJQGlRJ3eMQ1czR7DAnpOnMU\nAInEEUBiVSgmpUGlxB0eRK0gxTkiDeycHAGkbIViUhpUStzhQdQM0qUjgJSfkABStkIxKQ0q\nJe7wIEqCdHdxpENCSkgAiVehmJQGlRJ3eEQ19/gJpCEhOUHSREtIAIlXoZiUBpUSd3hEtdQa\nBg+FIz9IRI5aBEkI9gthvQJI7+YhE5IOUp2E9GyQmDt3SADp3Tw2kMaFGmTxu05CAkjZCsWk\nNKiUuMODpgUkeVaDv9ZAqzS0DZKYLy2fr47V1rXjG/kBpPf0OMwrBzkTUpSjZkA627LmSP26\nmJ29rh3jGigA6T09ZpCiCYnMUeMZaX1UCOoBEjxKNXLUd+7zVaMc0RNSSyDN2ckAia+qB5De\ny2Pp8CGQFJUmpIZA0gdz/IutAqT38lhBugwe7pHdJnpC2gVIRkbCHAke2VI4UkAq56h9kJaV\n7JQli/vtgUEA6a08JEiXLg5SCkdtgvRIAaQ39Jg46nq5eJC71uDhKCkhAaRshWJSGlRK3OFB\n0Hzf5d45RVo54UhIAClboZiUBpUSd3jENXO0rmbnBikpIQEkgPR+HgtHXXBkl8YRQAJI7+Qx\ndfeLXKrYDdIsH0eJCQkgZSsUk9KgUuIOD78MjvrAUSSmhASQshWKSWlQKXGHh190kBI5AkgA\n6Y08zIFd71/2hCshAaRshWJSGlRK3OERlgLS1Vu0Y0tIAClboZiUBpUSd3gEtXI0guRarmFk\nJbHSAJBGAaS38pCl75Gjvn5CAkjZCsWkNKiUuMMjJDUhdT6QGBMSQMpWKCalQaXEHR4ejb19\n48gH0ijGhASQslUzqJS4w8MtvWTXyduYjzJASuWoYZCwilB+3OHhlp2QABKrANJbeFgJ6eoD\niZUjgJStmkGlxB0eXqkJaYTIWf1OrjQ8FaS7LQMkx5J2dQSQ3sbDAOkqPUggeTlqPCPZS9pV\nEkB6F49Lt43spoS0eNRMSA2ApP8KkKhxh4dPKkjjDydIvjdnJqRGQNKWtKskgPQOHkeNo6Vm\n5wBpSkiHzpKfoz2AxL/2lkMA6Q08Jo468yCSDZKPo+yE1AxIyEipcYeHQzZI184B0jxB4kxI\nbYBkLGlXRwDp9T0MjmTp2w1SWkJqG6RH6pHHrKCn6dL3h+XX6334X3npLH+5+TpDoI8cyz9a\ntl4bpJr/OlH+AYOHS+PVE3OqEdd1fdXZY01IN2/myU9IyEjZqhlUStzh4dB0FdIyZruuy0Ja\nIKVzBJBWAaQ38NgSUqfcx1wHyZuQSjgCSNmqGVRK3OGha6DmqCQksRyN3TwUkLbNVAEkkgDS\ny3uoICkJSQdJnhtkgVTEEUDKVs2gUuIOD1M6R1tC0kDK4gggKQJIr+6hgHSdag26xwaS6GyQ\nghwBJEUA6aU9rnLhoBkkoSSk2UNJSC5oChMSQMpWzaBS4g4PUxtIekJSQMrjCCCpAkgv7qEk\npC4VpDBHAEkVQHplj6sJksLRBlL61XyTCBwBpGzVDCol7vDQddRAurpA2jgySg3lCen5Z39r\nXdzu7MJ4cOJAYgQgvbaHvI35+EOkgRThaIcg2f1deDf0v6dgowTVDCol7vDQdNRKDdrIToJU\nMyHtCiQvCgDp3T2uakIyanYSpIUj+yASR0JqBaRlJS4hF+YSyvV+ckOhbytfXR+2Fb2cq3oB\npJf2WO4+cRg5Eg6Q1oRkYRPjqAmQLrbcIAl5uay+hoPYQHJtqz2sv7pX9QJIL+0RGNnNINXl\nqJ2M5AZJqTI4tvU+AKR389gS0qgrQJLDNGMxlDXLACR42LoSQPK8lYmjRkHaXjWLDXwg/Tz1\n/R9x+pFEj6KaQaXEHR6KjjpIOkcWSEqtIcrRPkDSOn54aNebWxiToz4RpJ/Dm/+dhsyXS1LN\noFLiDg9FgYNIs8dNASmJo52AtNbnNDi2qp3QQOq1Vbu2ct32FjpIH+LP8P/Pv+KUxs+qmkGl\nxB0em45qzc4a2Q0eN3dC4uPo6SCVKWXeY2w7cPdbfPT5N8CoGVRK3OGx6qofRDJHdipIIpGj\nNwDJk3iC2ys6iX/fxN9xlpTpXzOolLjDY5Ne+7ZBunUKSKsoHL0BSL1ISybGxj+Gt5/GRr5n\n2tcMKiXu8FilX9FnjewUkKpxtGeQEmVS912cfg+JKZcjgNSOh75Wgw3SzVH8FiSOAJItHEd6\nVY9pOKeU4kyOXCDRMKJzBJCyVTOolLjDQ8ro7XZC6juz+E3kCCA5ZA3tTkIIkTjRUlQzqJS4\nw2PR1NnXVSFtkG6dClISRwDJIQOY70IApJfwGDv7zNG8IqTG0WUCySh+V+DofUE6ZZ/SsKhm\nUClxh8es41XnSEtIE0caSF0CRwDJJfuAbJlqBpUSd3jM2u4sFgUplSOA5JI1tPssa69mUClx\nh8ck5Q59MyEqSDNHOkh1OHpfkPqvX/4VtVczqJS4w2PSxbhu3C41KEO7LokjgOSUCpJQldle\nzaBS4g6PUZfuGgRpupxv5egAkMoFkF7R43LUB3ZBkCpy9GyQrJ7s7dbOFwpOWi1WzaBS4g6P\nbuRIrzR0V736PV9fvoGUwtGeQBLKz0iPB0jwsLUmJHlTMUepQYIkEhMSQHLLU/4+4TKK/XoM\nCWmpectndJAWjmYPUZOj2iCNI7f/9EcbJPXC1mVlOznkW1er67W/lutns0E6YY70Eh4X/Vis\nPrLbEtLkkcpRWyAR5kiyk0tizKVPtrUZrL+SIFC3/alw9DOhDVU1g0qJOzyUY0gSEX2KtKzA\n9Q4g9XKRBpl13CD16rP2kyThzIZX8xgvQ7rqT10dpQY5tEvkaHcgLVSYIK2rn2jLndjrBpGF\nYsOLeYwcGavhOxPSDFJqpSGRo1aKDRZIWhlCR4cJpO+YI+3aY+ToqM+QPCO70SOZo52CZA7k\n9Fe2B76MhMso9u0xXV5+VC5DGqWAdNkS0gxSIkf7Amk7IGuWFtyr1Rnr2mUXG/qxcPf3i/j3\n+UX8SWhDVc2gUuL+3h4LR1MuciYkHaQDdY2GVYkcPRukB8ouNvwQv/tP8SWzvZpBpcT9rT3m\ndYMCI7uNozkj1U5Ibw3S77H0jaHdDj30lb5XqSApHN37dI4AklcGMF/Fr3/io/8DkPbnsXDU\nWTOkDaTtNpfne5cBUipH7wvSSNCXcZr1LbO9mkGlxB0e3UE/iqROkQyQqiek9wWp//3R99/y\nF1oFSE/z0BPSpqsrIU0gHfz3R/IIIHmFA7Iv4iE5Wmvf6xUUK0gqR8P/B5EKUjJHAClbNYNK\nifu7ekiOts5ugXRRNp9Aqp+Q3hmkn1/HadLf3PZqBpUS9zf12Dg6GJdQyJHd+XJWNXA0zJEA\nEpsMkD4/pgO6Agdkd+WxJZv1GnMzIV1u2jvunUgvNgAkvwyQvonv4zGkXzgguycPZdBm1L5X\nkM46R91ddH19jt4XJCG2/7NUM6iUuL+jhzr58dXsLJA6gMQqgLR7D4Mj7SiSj6MJpPq1hvcF\naRnafccB2d14qBx5E9LFeF4MW04gmYAFlMHR+4L0uazbcMpdb7VmUClxfz8PjZG5s4ut1iBL\ndvp7Ro60lVYp2h1IjguCuI/2BFr+8SHEx/fsFcBrBpUS9/fzUBnZ+rq+dL4rIb0+SI7u/UCQ\nClUzqJS4v5+HE6QlIU0c3W52Qrp3ta+NnQWQclUzqJS4v5+HUftWD8eOuNxu9gkMLwPSYdB/\n+qMDpPXicaFe/rq9wCK9nc8f46nfX3PX4uoB0uM9rINIKyH361xMsDkaQRJ9UqmhSZBoGcla\nsC53XYaQtHZ+yyUiT7knNgCkh3vYIEndzdtOzBKdBCmFoxcAqe+XnKTAxDYiUxv6J8S38SS7\nP19F9v3GagaVEvf389hAmjjaDiMNCcnF0VxpmGHdQScAACAASURBVJ6vnpDaA0kuR7wtVswk\ntaHt6NG37AuSagaVEvf381DPV1V1l0id9aKd5Mg+SBvUi4Ckj+cqgXQS8ujReLl5nmoGlRL3\n9/NYL0RSpkjTGXZbQlJBEvIO5ue07/FyICnr23FIbUk5doVThHbjYVzRN+l6XzlyJSQxFu3S\nQMrjqA2Q9LWI1SEeQILHqgWTozJFGo/DbhwZCWnUPdFjtyDFBJDgIeVYq2Hk5LouTWxzBJDW\nfp7ZzcMtAaQ9elgg3XWOFK3rqs5nPCR8nkyOGgep+N4raltau7jR2P48TJBmWLaViTfppzLc\nUr7Ha4LEKYC0dw9tfVV52YSPo6ViN76SAlIuR28KEodqBpUS9/fzmBfOX0Cah3XbYdlthiR0\njpa1v4kCSFEBpL17THdEkhxNP69KQlo5mn4CpGoCSHv3UEAa85BQONpAMji6p4GUzRFACuo0\n/xykPs6qGVRK3N/P4zJ19JGR5Sq+680a2G0czUosfwOkuDJAWvhZfmx/TKoZVErc389jYuWg\nrKi6crSWGswrj+6JHgAprnSQTj1AasljAmlkR3KkVBoWFYKUzxFACgogteQhb2M+0SEUjrwJ\n6ZboAZAIyjmO5AHpf6NqfU7Io8v449D39/nPW99fl1fOy6NYtpC/39QXCToWf8Y6elmQJtX8\n14nyD9jbeVyW877XA7FqQhqz1ZSPjIvQpxepHgUJ6ckZyezJwvEblzC027nHZb6N+Xozsasy\nQzI52kA6J3jsGCSji9dbQwgg7d7jMiWkmSNhJyRtfrSd+50AUglHbwzSdwzt9uUxgbQW7NwJ\nydA9yeMlQFKW3xK9tpqQKFvr3vBa9R1zpJ15XLqDMkEyS3YOjm5pIBVxVBuk66D/9EfnHGm7\nytxalktszxTJeP9J/P0i/n1+Cd5oDGc2NOQxgjSvc3ITTo6MNbpuiRmpaZCoGUkDyfqNZX07\n4/0Dmz/E7/4TNxrbi8cAknLlhA7SwNHBvD/FdjkfyaOMo2ZAWldteCBIv8VPXCG7H49LmCN1\nUyE3m1+meBRy1AxIvfrbI0D6Kn6NS3H9AUh78TgetuvG1wuRRlAuJkf6UaS3A8k3R+qrgDQS\nNC7/jRuN7cXjeF/oERtIEycXs9BgcETxKOXo2SCtZTNH1c6xSFeJzPf//hjXWc1eaBUgPdjj\nOF8ooSUkN0fb2vpvAxKxz7MIF/bt22MGaZ75aHePNe8ttkmeBBH3KOaoPZA4ko+3YU7VDCol\n7u/mcR+B0Tma8o1VrZs0bfjWIPXhQ6T5sqt2k9RDQ0mqGVRK3N/M4z5mnvFKvu0Y0syR+y5i\naSCVc9QgSLWkgnQSijLbqxlUStzfy+N+GEBajgxROaJ7AKQEqcD8VDjKvWlfzaBS4v5WHgNH\nK0jX+f/lYj4bpO0gktwGIHHKM7TLVs2gUuL+Vh73w7G7KAnpunJklxoUtABSBaHYsF+P+9jV\nL+O15ULnyAHSxtFdbhTzYODojUH6/P4hxMf33DtfAqTHedy7w3Etc0uQpmpdMCEBpCoyQPq3\nFBxO/9ybR1UzqJS4v43HuDjx2NVnZuSZQVPRWwQOIm1FO4DEKgOkb+LLgNC/LzhFqG2PaY3v\nEZubBtJ88MiRkEbNk6mVo5gHB0fvC5IsNqD83bLHjNGUfgaQhinSdqpq574otnPcDgkgcQog\n7c9DJpUxIU2juFjpexJAqioM7fbmcV8HZ+vI7hrjSKgc0YoNLBy9L0goNjTusWE09vU1IV2V\nJbccMyQNrvcByVxFyNHhnc/4ngwJ5e9deSgYjV19SkhiAungPxarcbRWv98BJKF3cfep33VA\nKlXNoFLi/tIeajqaEtJlRGiqNKwcuUrfbwuSgc6jQOI4wbxmUClxf2EPHaNxOTv9GNIkT+lb\naSXosbUeaYaoyiAdB/2nP7pBmi+Gna+I1a+ZFdq6d/I15UmiANJOPAyMxjnRWmnoYhU7pdTw\nUiDF50j2+gz6M56/1IvQaQJI+/AwMRpBmgoN1+Um5fOTcZACHqpeF6Te9YzryTQaANIuPGyO\nusM6sIseQnJyFPweTBw9H6R56Lata7clH/0Z9S9tPEiVDhIu7GvSwxrWdSNHcsGTg3LWt6st\n7SDSdhu/twJJ/bu3nwmlKaIAUvseDoy645qQDmpCcpUahMrRnQQSF0cNgNS7Uo3jwd4Mc6QX\n83Bx1B2XhCTUy/mcawfpWUpp7E1AUqty1rht+8sY06Fq92oermHdypFWsnNzdHtjkB4pgNS2\nhxOjLSFNf2x3nrBBMssMJJDYOAJI2aoZVErcX8zDw9GyUsN1Pr9OrpjvkrNep3vYAkjpYmBH\nU82gUuL+Wh5ejg4TIIfpIFKII4KHQwApXQCpXQ/39Khbl+Ca85FcQT/PwyU+jgBStmoGlRL3\nF/LwYbSCNM+Qxp9+joxXzsrvAIlTAKlVD5Ojy6bjbUxGFkdmqeHWmSCd1UZ934ORI4CUrZpB\npcT9VTzsYZ2CyXEa1F3lf8LeYpTNEUCqJ4DUpIdjWLdhcpxmR2vFzsNRLCEBJFYBpBY97raH\nmpBGiA7yGJJwbDHKVfimgMTJEUDKVs2gUuL+Ch7DsC4E0m1OSMvN+XLqdbMAEqcAUnMed6fH\nCtKtWxPStYQjgMQqgNSax93tIUEaR2xLzU50Z3G1NlQUpsz9PVg5AkjZqhlUStz37rFU67wg\nKRwNAzvRhUAyOTrrf74DSLETuPm6P0BqysN7W8otIR0VkFSO7FqDBZJeC3R+D16Ong1S9JIi\ngPSaHv47RWwJaQJpOgx7viogETjq3g0kofx0CyC9osc9sMLPzMnE0QDSYQbJ3mDVVPzWqTAS\n0tuANP1mLLclr51Nvn7PK4DUjEfwrIOJk5GOMSEdplJDlKOQgcujY+eoNki3Qf/pj06Q1hVP\n/NeXlwogNeJxDx8sHUFZ6JgTkjBrB8l6AZDIGal3rGqStcaJVwCpDY9ItlA4Gu9uOd41Nlyx\nI+idQAosvtUXLPWjCCA14WGeWxcEaeJoSkgBlESUCsf34OaoCZB8ywNlLRbkFUBqwMM+1dsB\n0sbRtHbQNLDzg2Qfi7VGgq8Pkr4ipH/xLWSk1/BwnOptgzRzdOzW4nfXBYrfLo5iWa8CR88G\naa3Imctt6atuISO9hIfrSlgLpCUfHeeRXTclmCtAioH0OAGkJ3u4F2YwPFSODtP5dfpAzVn8\n1rCwOQJIrAJIz/XwLMzgBWnhiAJSzMj6HvwcAaRs1QwqJe478/AtcGKCtP52mEd2Z+F+OcUJ\nIHEKID3Tw7tQkO5xW0k5iMOakAoPIwEkVgGkJ3r4F9zSPG5byhHdBpKXpDlbRbEASJwCSE/z\n8K7/aHrcVI66rdTgAcl1OZ/rdCLze1TgCCBlq2ZQKXHfj0cAI91jS0jHzpWQzBmScNQaAFJt\nAaQneQQ5coIkhARpLjUsIFkcOYp25hUUlscogFQigPQcjzBHqsdtYUVMPd2ufVslO9dRJAJI\nNTgCSNmqGVRK3HfiEeHIBkkM06M1Ialbxm+J5LMDSJwCSM/wiHGkeCwcLSur2iDl+wEkTgGk\nJ3hEOTJAEuOcSK73bUyR8gWQOAWQHu8R52jzGMdpyuhNSUhukGTtm4CF/j2qcASQslUzqJS4\n78CDwJEKkhAbSGqpwQmSq2TnGwu+BUiPWUKIu7EeIEUVOgxre9yUe5UfZUJSRnaUY0gLSAef\nx9p6BT0bJOelRtx9vkqjNYNKiXvrHiSMFJAWjkYKjvPNl2VCGkmiHEPyFL+N71GHI4CUrZpB\npcS9cQ8iR9JDJqQpm+ggTfIcQ+pUMO53TxJ8I5CUdU7kj55zUbseID3Wg8rRCtI4iltBinOU\npBcA6TzoP/3Rt2aDudyJtsQdgwDSAz3IHC0e8xXjl6Xyfe1mkPLu5GJNkV4BpFhGcoBkPMuG\nAEB6nAedIwnS9HPOO9fxmj4lIRUfRtK+RyWOngySmGUM7XS8uMZ2AOlhHgkczR4yIY26bveM\nXf62paQqZYoU9rC259WTQZI/3UusYmi3S48UjiaPZSmgCaTrYRmaBUByl+zu3jOKXh4ksT66\nl4TkW9SuB0gP80jiaAZp/vUyTo8OS1+XM6Tr8ooq5zGku+8o0luBtC1hpxQa1CXuylWlpg5Z\nuie/47bsmkM/pKPh8Tj+cV5evI4/Ltr2or85fc+OZ00dkz9dAyIUGx4oZKSHeKTlo8lD3nvi\ncl2OInVq7ftqF7/VhKRkGO+54sr3qJWQnl21e6AA0iM8UjkaPNalvpfZkAFSV3oUCSDxCiA9\nwCOZow2kg4pL/h2RHFMk5XtU4wggZatmUClxb9EjnaOuXzi6djpIa4W7/DASQGIVQKrukcHR\nUoE7GDOhwNFY43QHiUbIGyBxCiDV9sjnyDzBWys1ON9hmwdGgwCJUwCpskcORzMWY7XuoCxp\nZySki/UGh3loVrV+j3ocAaRs1QwqJe6teWRy1M8caSBtM6SrVf02OFqunLhLkFy1BoDEKoBU\n1SOPo24AaTq57tBpIKkKJiSJRrDMJ79HRY4AUrZqBpUS97Y8suZH4zlz/ZKQFJAMKEqPIq3f\noyZHAClbNYNKiXtTHlkcdeNArZdne2+8+C5Eyrs8qVu+x7EqRwApWzWDSol7Sx75HA0g2RwF\n3hGRc4o0fY+6GAGkfNUMKiXuDXnkcjSC5EpIq65q+dvF0Z3ER1+fI4CUrZpBpcS9HY8ijvol\niXhAUhVY6jt8SlFfn6MmLuwj9XHhvVSWSAhAquSRwZGQHEmQlFqDeXbQpbtNBN1CS+ZHQKrP\nURMgkThyb5lwAS1AquORw9H8sA3sDp0K0qrrdAqe+wis5i3f454iVS4zzGoAJFIPB0iNehRx\ntIHk4mhSuPi9IBJMSMdmYhVuwK+BmXHNvv/0RxOkBZFl1RO5rJ25oN32u7o+ilwBj57T+FQz\nqJS4N+FBW5ZYlxy5zQlp9PAkpEkX632JOrYSq1gDfpEy0pZqhHaNuZlrJFfeFfBiAkj8HtnT\no25NSIuH5CWwmF0cJNfIbsxZTcQq2oBfFJCceHiKEOpSXe43hASQ2D0K0tE6sLNA2nTrYtVv\ngt4EJJlMtASzroPimhIBpGY8SjhaKAmBdNOL3w6QjvFPME2iGogVoQG/EooN9njOwGNNXACp\nFY9SjuZKw+wh7+eickS4Nnb+CKFSwzuBRFrQDiC15sHA0QLSWms4Lve6nOVa0c75EQLF77mq\n9/RYkRrwiwrSVqpTy3VCaIisB2S3B706ERNAYvVI50gokGylbwUk47zv8ShSuPhNTEhPjxWt\nAb/iIBHE1v8BEqNHRtlbneNsCWnwGH+6QOq6SEIiHEQCSKsAUoMeRcO6bqs0dBpIEontZCCF\no6yi3YLaLvZHoKuxgMQmgMTmUTas0xLS7LEAc15PwXO0kOzZAaQqAkhcHskc6RhpHKkgnddX\nFyUdRfKWGnayPwJdDSBV1PM80jky/g6DJMVwFAkg1RBA4vHg5YgKkveTxEsNO9kfga4GkCrq\nWR5l5bpRylnf3cLTZVrMTtvw6rgLheOjrBwFRnb72B+BrgaQKuo5HoVl71E6R3PNzr4BxaQU\nkBwCSFUEkMo9SsvenTmwm8/+vmirq64irMNF4mgf+yPQ1QBSRT3Dg4EjKyFNII2/na3CtwqS\nXWyIXvYKkOoIIJV6ZC9yosjgaPYYiTnrd1g2Sw2x8ndoirSP/RHoagCpoh7vwcVRd1V7fT9y\ndB6k5yMDpIzDsUrG2sX+CHQ1gFRRj/bIuajcM7DTsscMkvXOOEixw0hvBZLwL7Jlq5AEgFTi\nkblGviGbowkka6GG+YZJEd2JpYad7I9AVyOA5Oji3g4PkJ7nkcWRr9Kg6DCDZG1q3HjMpTBH\nAAkgEeP+QI+sYR2FoxkkOyFNSgApWGrYyf4IdLUUkNbluIR6rZ68uG+76i9fACnXIw8ju9Aw\nVxrUp6YrZOeRnXXOd4Qjx8VL+suKdrE/Al1tYOYy6D/9MXipufNyc+Wy8gIBpDyPzHRkcrRc\nZGQmpBEkxyGka+woUkyvBhK12OBYgsFaCwUgPcMjEyPzSr4FlINVRJhAEp6LkJxtUaQfrd3F\n/gh0NerQro+BtI33CgSQMjxy05F9Rewkm6MlI9kJyduWQ/YUCSC5QMLQ7lke+Rg5+/7BcW1E\nn3kUKewPkDxzJGSkZ3jwpKNNjoQ0gJRxFOmeUPvudrI/Al0tASR1afxtMLdV7ZCRHu9xv+d6\n+DiySw0TSNbmsUuR7vpp37GR3T72R6CrxUEiCKsIPcnjnuvhHtZN/d0Nkiu5xC6hCN9ZDCDp\nYjh6pDfGqZpBpcS9cvv3XA9vZcCZkGaQEg4izcNNzzHcReYEahf7I9DVyjMS/UQ8QltsLc2q\nGVRK3Os2f8/1CHDkBMlRs+tMkJQ2SdM2gFRTAClB90wP37Cuc4A06yJskPwXI9kc+e6JpGoX\n+yPQ1QBSRVX1uGd6BA74eDgaMxKdo7yEtI/9EehqAKmiWvQIc+QFyXwqfnVs+CgSQKoqgESW\n/Hc/zSMwrPODdOmtugHhUqSko0g72R+BrgaQKqqixzp+SvIInsfj4Gie3AgHSNf4+kFntQ1D\ndrraxf4IdDWAVFH1PLZ5SIpHlCM3SAlHkZT5UVpC2sf+CHQ1gFRR1TyU/kr3CA7rnCAtyWQA\nKVb8tj9X2lGkneyPQFcDSBVVy0Oti5E9Iqdn+xPSMEeyOdLu0ycRlZ8rYTm7VbvYH4GuBpAq\nqpKHVl+melA4ctYQxKVzgKTeXmxt2lH4ds6QAFJtASSC9O5aHaSBmZsxTJObeQaL0YQEkGoL\nIMVl/LNP9MjnaACpd4IUmXOF9JYgBda1K79uwm6QVTWDSol7hTbN4RPNg8SRDySzbnC9iPhx\npLPasCFXytrF/gh0NQJIwS4OkB7rYU1DSB6068BdpQYxJCQDJCHnR/f7fJW7fNREXRhSahf7\nI9DVAFJFNeORlZBkzc4EKXYk1nMjJXMLQ83EKtiAXwMzwvG/ezkusV4luy51ApAe6mH/y0/x\nIC5M4jyIZNcaLs7PYSg1Ie1jfwS6WsIcSV3Qjmu1E0MAKSxH/yV4ZHEkR3bd5WZRcaecatf5\nZkhvC5L8KcwnAFIs7sztufJA3IO6UJaHjsvtvHkI38dIEUDq1xVPeqE+ySaAFJKzA9cGaUxI\nq4fwb7cq57SGbif7I9DVEkFS/wdI0biztuZOBDGP6NGeWELqVJAutCsoDp13XAeQ1sEcQCLH\nnbMxz4Aq6CHiB03X/u4AZHzz5biBJO4zSASWAsWGtwVJXftbLl+Hqh0p7pyNpYNEOfVgyxvu\n4vfY7VeQ7oSEtGDiB8kz9NvF/gh0tThIjxRA8so3w/d5EJLRQEuUIw0kog4ZCWkf+yPQ1QBS\nRT0NJBJF+jTGl5DG4nf69wBIAIlRjB7ekrPDg3o2qVYOsI/GTq3cOhsk4lEkt3xFvV3sj0BX\nA0gV9RSQyCdlBzjatIFEO3p0NBt2beDSLvZHoKsBpIri8/D3YhskYpN6d/eAdJtW4ho97lMJ\nrywbdYGjTLvYH4GuBpAq6hkg5XHkAGRq6HI+zx73+U+A5NPrgHSafw7anqsZVErcuRoKDKsy\nQYpyNOq4nOndpyYkb63Bf9rDLvZHoPu9DEgzP9uPSTWDSok7V0PcIB3MaYyzZnfszitIk0aQ\nwigtUyQfSIHTh3axPwL971VAOvUvDFJonm94JJe9Z7lBOnc6SFRlcLSP/RHogK8CUg+QJlFA\nInEkRo5uAElvwK+XBel/oxg+UgO6J2xLiODBfurq2OJ87m8X09/YME3Hkje3rpcFaVLNf50o\n/4CxtBI+gKN7JJ1dt8kx8RmzypyQ7oMHsYQRPIoUvr5iF/sj0P0AUkXtGKSJo04HqbD4DZAe\nJ4BkK3JGQSpIRI7mhpblGXr5VwlIkQv+drE/At0vDlKoc3MfQAVItp4B0nnu93K9oD4tITlr\nDbELZ3exPwLdDyBVFIdH7BQ3zSOPI6toN5KggTT9vIx3RQrqODu4QIpegL6L/RHofi8G0uud\n2fB4kKZNpo6vg0RVVkLax/4IdL+BmYPjfwMkeYnsurBdr1w0yyica2cqes51GkjukpoG0nk6\nisQMUnxd/V3sj0BXI2UkZbUGoT/D3PEBkqkkkDITkgbSWW5ym0C6ax65xYY4R/vYH4GuRgZJ\n6eYAiRr34hbiFwElgUTgSP6icEQ+o9xrAZB6fWjXy4XtttVPWAWQDPGC5DlW6gJpvLWYBElM\nHvGFT7y4EDjax/4IdDVysUFf2M7IUVwCSLoIV6UqHpkJSeXjrLZ0kQmJCJJXAGnp3MbECEM7\natxLG+AFyXfyzsaHzEdzz7/IZvsuhSOr2EDhaB/7I9DVMoZ25jOMAkiaKMskcIJ0Vmvfyu1b\nJEiEoZ3rYiSA9HABJE1pIHFxdHOCRFYeR7vYHwCpRlApcS97O2ndnnKQLooOl8vtchTzHw4P\nggASQOJWmQdt/SsySN7LGyQwc0K6OT6A9MgqNtA42sH+6ABSlaBS4l707kSQsjla8LAyyX1t\nl/Y93MQQOdrB/ugAUpWgUuJe8mbi7by4QLJP7NFBop37bbsApGcIIG3iBSkwsJsAUTkSqr/o\nUkCyROWo/f0xNeAXQKqoEg/q/SWLQbISkt73F5Coh5HMxAaQniKAtCoVpEyOFpDOcqObq+v3\npMNIUxMGSGSOmt8fcwN+AaSKKvAg3/C4EKR5xHaWG92cfZ/0Pab3ZSek1vfH0oBfAKmimgEp\nkJBGkFaOpoRkt0T/HtkJqfX9sTTgF0CqqHwPMkfSI3tkp4G0HkTS/ReP9GoDQAJIHMr2oHNE\nAonEkdNfqB6Wjsb/plECR23vj7UBvwBSRT0OpJKEFOBoBSnvGgqApIEk72ruEnPPB0iTEjii\ngBTiqLuaHAkrIflAinGSwlHT+2NrwK84SCLUxQFSMO6Z70sGKT8hhcsDEqTxdDxC9Tu/1ND2\n/tga8AsgVVSmRwpHk0fu2UEqSN6DSJ0EKf5ZdJCSOGp5fygN+EUFSb/QXC7Jpa/VVY4BQBqV\nClLu9RM2Rz6QaB/lrBu9HUhXx//GHEl28nV1u+U6c/Wqc44rzwFSl8gRAaRQQjpflY2mhORq\nzPk9bE5KElLD+0NtwC9a1W5dH1I4lnDQHsoEkFI56uK3XAmAdJYDtiUhefyn75FatQNIDpAW\nVCRI21pc1l9lAkjpIOWuHTRxZOOh2sumqd9DcwJIvmKDlpF618pcAKncI5Gj7DW4OjdILo46\nYq1BUyJHze4PvQG/Uqp2xv8Y2kXjnvGex4E0cmTxIVy/O0CKcgKQrKHdekBWXW1VvrD+BZBY\nPJI5inoE12rQ8DD6vvBvaeo8SH8mlaNW94fRgF/UOdJjBJCeAtK0ie8gUhcDaUVIdQJIAIlP\n6R6pHMVBCi8edF03mTlyDxSDHs7bIQEkgMSo/YHklsNj2zjvvmIUD3YBpFzVDCol7qlvSOYo\nH6TzCtLCUcC/7/xDO6aE1Ob+sBrwCyBVVKpHOkdRkLwJ6eya+DiL39TvoVilc9Tk/rAb8Asg\nVVR9kETMgzCyU1tz/nHpUw8jASSAxKlEj5yElAvS2QWSJyG5QAqiksFRi/vD0YBfAKmi9gSS\n2fnVo0h9/YTU4v5wNOAXQKqoNI8MjqIgeTlah3bzFrdA359AItQaNi+ABJBY1TBI8y0orpKj\ncN8PeLiKdjkcNbg/XA34BZAqKskjh6NckJwJyX/Wnu0hWWE6iOT04BdAylXNoFLinrJxDZCi\nIzuZkMIfwV+1Y0tI7e0PZwN+AaSKSvHI4igbJDmy830GPTulxQogASRmJXjkcZQJ0tl5FEn9\nDGrxe/gelOXz198Akhuk4CpCzHpbkDI5YgRJ+BJS6pJ2eRw1tj98DfhFAGm9Fqm+3hSkez5H\nQQ8vR7ErjPSENG5JP5AEkLwZieWaPZLeE6RcjPJB0mp2oWNIc0LyejhqDZkctbQ/Ag34NTBz\ndPzvBElbwE5b4o4LtbcEKZ+jIpBoHE3yebgu6XtjkOJzpPW/ZQE71xJ3ACnTo4CjCEjRkd12\nAUV45QffcSTGhNTO/gg24FcGSL2yoJDs/YKHgTcEqYSjXJDcCcn/STzHkfgOInXt7I9wA37R\nqnb2upASJLGO9zg6/tuBlF1mmJUDkrfU4DuKlBQrgJQHkj7IK9a7gVSGUQlIOkei8xe/r7Hv\nUbTmyaom9ke0Ab9oIGmLfMsntzkTGwJvBlIpR2GQvBy5Dw15QBo39J9rR30+rhb2R7wBv4gg\naVW7fgNJlh4AUoZHMUeZIEVuv2clJHqs8jlqYX8QGvArDhJNACnZo5yjIpDGl4/b7ZfdmhKS\n58I+zppdC/uD0oBfAKmiQh6FZYZZ6SDNIzudo+iqx26Ps20CkApBYrjH2NwOTzOragaVEnf/\nSxwYTQR4PUJTpBmkYxdLSIssj2PHnZCevT+IDfjFlZF49DYgsXCUAZIrIcU/knNoB5A0AaSK\n8nrwcEQB6WyokwUE72cSywIN1+u6UAMxViUc7R6ktvQmIDFxFARpSUiOvHGJcaRsOj9EPKQA\nUjN6D5C4OMoDyeRI6B9Kqzz4QHIiU8QRQGLVW4DExlEmSIc1kThKDS6OnHMku2GA1I7eACSW\nsveiOEiOkd2C0djtYzW7DSRLZ7uYAZDa0euDxIhRECRvQjosyYVc+3Z7cCckgMSqlweJlaMs\nkJYsIxOSdTDWVYmw50jMtW+XRwUBpFzVDCol7uYTvByVgqRKfjJnRY+y9nchRwCJVS8OEjNH\nAZDkBMYC6WI+sei+tOcBydf+JoDUkl4bpBocJYA0Ves8IDk5WrelxAogtaSXBombIwJIZ/Mp\ng6N1hnTX/lrkB8mmppQjgMSqVwaJnaM0kOZnNJCMqp1Vd/CCxF9qAEi8el2QOA8fSflB8k2R\nrlqpgXoYyVyyuAZHAIlVLwtSBYxyQJJou5fHpAAAELhJREFUTP3+Fr8QaZHucQBIzetVQarC\nUTpI0YTkqXLrHmcbm3KOABKrXhSkOhz5QVqL0/NFrOufV89BJPkJfUeLonejAEiN6TErjD9a\n90rteqN1kL+c1T/668Xb1H1q65r7SY65b4Tq6CUzUqV8RMhI5047dHrVi9/KDOk+/W7knW1r\nxcN53S1DQkJGYtUrglSNIxpIm67e0xoWkAw5QZpkggOQWtMLglSZI9f30KdIq4yEpNYawhxp\nc6QqJbsOIPHq5UCqcfhIKg6SNg67Hgc0joOW5Rhu27IMyvIMm1SQxtUeRlyOy6OiucVyASRO\nvRpIFTHygrQV6c42SN06E7pFDiKp6asPZB0WijqAxKsXA6kqRx6QDs5fBy0crSAlOAVixcUR\nQGLVa4F0r+vhBEmBx1NqcBwTigF/9h9HAkhN6qVAulf2cIB0UJOQp9RgQyGiIK3tm6+wcQSQ\nWPVKIN1re9ggaf3cc3qQQzZH+rZn/xwJILWpFwLpXt3DAinEkQXSVmuwE5Kx6dn/PQBSm3od\nkO71PQyQDvq4Sy/ZDRzpfV6pNfivQ1rf7PsIfBwBJFa9DEj3B3joIBnTF3PduQBIliyQPB4A\nqVm9CEjyMOzjQDqYfdxISN3K0Zxd6NciLR4VFim2PKoLIOWqZlD9WuccVTuHUDysVGEthGqB\nlCLf9wBIreolQNrm7o8CyT4l23dpbPguzB75DiNxcgSQWPUKICn98jEgWcO64HJ2JhRCB8lV\nJD975kgAqVm9AEhqt3wISI4rhLzrq9pvF/ondh5s8pW/AVKz2j9I2j/vDwDJkY5cCclbwNZB\nch+0HUByMcPKEUBi1e5B0ucb9UE6uDzO1iDs0nmK38LczqWr+3sApHa1d5CMeXt1kA5ODwuk\nISHRjyI55Jwj8XIEkFi1b5Csq/gqgzQN62wPR0K6br1+GuSlHUbqnEM7gNSwdg2SXUauC9LB\n7WGseDLKAVKSnN8DIDWsPYPkOBxTtXMcPB6R2y9bZQf5ub1nh5+dcyRmjgASq3YMkuuwZsXO\nsVbrTA/H4iR+kMYB3vLB/VdZnKVHzSkSQGLVfkFynh5Qr3Mc1klOHKSL6+xtIX9EOZpAqrFI\nsS6AxKndguQ+zaZW5xjTkQckV0LyXgZBB8kSQGpaewXJc7papc4xDbECIBm175EjZ/WbWrlz\nzJHYOQJIrNopSL7TPut0jpkTN0jnbQMpP0hk2XMkgNS2dgmSfxHIGp1DVhmcIDk4mkDSq9+3\njp6NFo8aixSbHvUFkHJVM6hSgasQKnSOlRIqSJfOCVKSrO/BzxFAYtUOQQpdzcPfOTZIXCA5\nKg1mqcGsOxDWsLwCpLWBvWh/IAU7InfnUE/1JoJ06XwgzQ3cgwW7pVVzjlSBI4DEqmZAulMV\njrvvhXMdre1fVg2f8Dp/Hfm1pkdxn+7kMv4Z50jOkY6rIm/JEUDiVCsgMS3a7QcppzV97uM7\nIDtphWP8IpH7VpJAmlSDn1UAiVMAyS83R5bHuJnGhqP4nVSy2+ZIAIm5e9ZTIyBx3UXC51HO\n0SNBQkbaGtiL2gCJ7W4sjCCZV5T7QJq2M0A6an9NHKWhNM+RDgCJuXvWE0DyyFqZIQSSPutx\ngpQmZCTZwF7UBEh8twdjA8le4cQ7tOs2kKYvYpQagre4dOoKkLYG9qIWQGK8zZ7Hg4EjCkjz\nFykGaa3audYr4hNA4hRAcsnVg3NBMt8eBencyTlS1YQEkFjVAEic933lAcmZCQIgaRzFjiIR\nQRoFkAASPais909mAck9onKD5KrZFRe/AdLWwF70dJB470POAZJnZvIwkK4d5khbA3vRW4DE\nypHmYXNkgnSdOUpMSshIsoG96Nkg8XLEAJIvCxSClKh+Pmc1/Y0pHlVbZ/Jg7p719GSQmDkq\nB8k7mnKDNGkCSX4Ts9TgKD1Eig3b0A4gASRiUFsDyT8r8YOkccQA0la1wxwJINGCys2Re8dx\ncJQNkvV2GkgY2i0N7EVPBYmdo0KQQhkgDFKMI+sNAeE4ktrAXgSQNgVHUk6QXCesWtXvxFrD\ndfMASACJElR+jopACs9IXCC5a3aFIG0eda+iAEiseiJIFTgqASkys6eD5Dwcm3ocCXOkpYG9\n6A1AYuHIBdL8FvO0BoYThBaPuhwBJFY9D6QaHOWDFK00+4oNWqnBUWtILn9vcySABJDiQa3C\nUTZICRzZIClfhQGk8+pR9zASQGIVQBoV77IBkNRvErqdi/KWkGaQ6l+OBJBY9SyQ6nDk2nEs\nHHlBiiUkl6gZCSABpFhQK3GUBxJlCOUAiVb8Tq01XDcPgASQIkGtxVEWSKSpiA2So2bHVrTD\nHGltYC8CSLTu6gHJGKVZIN2uwnw7SZgjyQb2oqeAVI0jx47j4cgGyZeQ3CClCkM72cBe9AyQ\n6nGUDhJ1+OQpNly07+KoNbjKD8FiwxXFBq2BvejNQSJPQzwg6V+FA6Stalf5VDuAxKongFSR\no1SQ6NN5N0jGV6FVv8MgzZ8XcyTZwF70eJBqcpQIUkJZjAKSnyN9okQBafwBkABSIKiPBYmf\nI7U0Ha01JJfrrooHQAJI/qBW5SgJpJTDNCZILo5YQLI86gkgcerRINXlKAWkpH5KAcnJ0dV6\nO0njHKlyQgJIrHpbkNL+vTdAWt5MBilZvdlUBQEkTj0YpMocWTuOiSN7jjTo7hrZmUouf2/F\nBoDUASRPUGtzRAYpdf7hAOnunCKZSgTpqoCEOVIHkDxBbQWk5D5qg3R3juwIb0dGSmpgL3oo\nSNU5IoKU/m+9CyRKQnKKANIDjscCJFY9EqT6HNFAyhgz6SDVK35LGpGRZAN70QNBegBH5o7j\n4kgHyVmz4zyKNFcGAVIHkFxqBKRSjjwgzbmE6TAShnZrA3sRB0gn5Xd/SO5P2HEOkLJqYRoJ\ngYTEdRgJQ7u1gb2IAaQTCaT7M3acDVJeTVnPSHNyJdUanM/6iw2y+g2Q1gb2onKQTrSM9AyQ\nuDgyQZoGqTVA6hSQMEeaGtiLHjW0uz9jx1kg5R7jdICUUvw25kgEkDBHkg3sRYwg/W+UZ5M7\ng02KzrP0Jw8H4rsPh3nT6VEIcTjcbrfx79v0eO/HRyH64/h4PB579XF4fn2cP8vyeeTn6i/D\n43V4vOqPh+HxMGw1Wg//H1kCAT1ID8pId45/nSj/gC2PrioDx7Bu1Fx9vBj3XPY3kHRP9UV9\n/YSEjMSqx4B0ZwkqJe7Lo9l5D0SMHJtZIE0e4/BM6erMHAGktYG96CEg3XmCSon78qj3XnIy\ncmxnHwOSIFES0vD8Oeeo7AMuRwJIrHoDkOhjOteGKgb3NbMacHgTkucF82nLGBlJNrAXPQKk\nO1NQKXGfHzaOqGM6ryZkbtOvyvcoAClyK+bVAyBNDexFDwBJnhr0BJBKKepUkJTvIajF76s9\nNARISQ3sRQ841+5ZIBUno0kjCDfTg5qQHLqQtsccSTawF9UHaT1X9bEgJVLk3doJEr32bRXt\nXAnJNkdGkg3sRdVB2s75fiRIqckoyJFx4voEktbNU0CiCSDJBvai2iApXfBhO+5wSO29fuxG\nkO76BSB9AkcijyOAtDawF70cSNPMKLP7OiTs66gSQLq6PgllRoU5kmxgL6oMktoJH7HjliEd\nK0imenqpgVSFcKVDZCTZwF5UFyRzblFZh8PswceRo9ZQBBKp9t0BpK2Bveh1QJrGdMkghasS\ndxdI5INI9ktUjobvUZ0jgMSqqiCZk/SKWoBIBSmMkZMj+kEke1hIBukIkJYG9qKaIBmz9Ho7\nbjv0mghSJB05R3bdRe/jwXmQ/kloB2NHISPJBvaiFwBJHZ1xz5EctYYUjgifxM0yQJIN7EUV\nQbLLxhVknAfUEEii5IMAJNnAXlQPJGsZuwo7zioVPACko/49EkZ20c03ASTZwF60Y5BcJ6XS\nQQpNj9ZTGVwJSWjfIwxGHBv3xzgCJNnAXlQNJHtdVd4d565bk0EKcrT+5qg1FIBErtkhI20N\n7EW1QHKsT8y543yHfyYPNo6cR5G6XJASOAJIawN70R5BClxoRAWJKOFISNr38HHkWqchASQM\n7dYG9qJKILkWzGfaccFzEaqDdOxIIM3SPgj9IFKHjLQ1sBfVAcl54wmOHRe76rUMpLv5ua3E\ncuy07xEBI/pBApkVIM0N7EVVQHLfwKV8x8Uv14uDFGjD+tg2R5cuAaSCzAiQZAN70X5AIi3B\nEAUp0Ib9qXNBWt53zr2pC+ZIWwN7UQ2QPHcUKwoq8drxGEhpV6A7VgAS6veIgXIN/hn6NH19\njgASqyqA5LszX35Q6esB8RYbrFpDAUgpxW+AtDWwF+0ApJSFTEaPdI6sIsMiGyTRxUESrtfT\nOAJIawN7ET9I3lvF5gU1bT2gLJC8n1i4EtL2PRKXs0vY/AiQZAN7ETtI/lsuZwQ1eY3HAEje\npgIcaSAdl7RCBUn9HIkJCRlpbWAvahmkjJVS/SBlrLqq1xokR+v3qHYQqQNIWwN7ETdIx8vl\n4v3/fq/9+L+s91H/H5X7mKb/vcj9+nx3cHw9cYP0ZL3KjsP32JsAUpPC99ibAFKTwvfYm14M\nJAh6jgASBDEIIEEQgwASBDEIIEEQgwASBDFo3yCdPE8PCm7QmiLfY/s+jYvwPfbxRdK1a5A8\ne+W0/djHbot8j+37NK7Y/tjDd8jVnkE6WXvmtP08OTdoUrHvsReQCPvjdbVnkNYdZYzkTsav\n7Sv6PXbyTcLfYxdfIVcvAJLFzU5BCn2PnXyT8Pd45SnSK4F0Oi17aucgOb7HXjpg+HvsZYia\npVcAafuXbt8ZKfA9dvJNXuV7ZOgVQDL+3i1Ixt877ICv8j0yBJBaUPh77GdI9CrfI0OvAtLJ\n+exedlv4e+ynA8a/xy6+Ro5eACT7wP9Oz2zwfo/dVLte5XtkaN8gQVAjAkgQxCCABEEMAkgQ\nxCCABEEMAkgQxCCABEEMAkgQxCCABEEMAkiZEqvUZ3+ejI2Ul74I8eWXr7l/w6sfgrg3qNtB\njxN2SabcIBldfPvz32ne+IunuZPdVsg77bNC9YVdUiC7Q3tBOolv//r+90n8pDaV5As9W9gl\nBVo79L9vYgJlSSp/vgpx+q5u8Et8nR5/i5Oy+fD6v6/TlnM6GjcX4u/py/jb1+Et/z7E189h\nu8/xDZ+T05fhaYDUnrBLCiQ79Oc0MDt9LiD9nodp3xWQvoo/8y9/1c2H10/zlipIX8S34efA\novg1zJqGP5aB34d861eA1J6wSwokO/T3cerzZSXnQ/waiJmpMLa0Nv/y2f8cs9S0wfyWOZV9\nG7LY8Ouv8bkf43Pfx1Hh+NbPLwCpPWGXFEh26A8xjNP+jSljeebf7x9f/CCpm//rJT/rL8uY\nb/zxOT/3Mb17HB0ub8Vea07YJQWSHXp+3Mj5IktwbpDMzQ2Q1k2U5/QGAVJ7wi4pkAekb+Lj\n5+9/GkjrHKn/A5BeUtglBfIM7aYfnxpIsmr35/TNHglGQfpY9xKGdq0Ku6RAnmKDGNLPpz5H\n2o4j/bU2j4P0fdz21/iuH2N1AsWGBoVdUiCr/D3Ws8d+b82RxiNCsiaubS6bCYI0v2FkEOXv\nVoVdUiDrgOxcyh4mSeLLHx2kIRt9O8lz7ZQDsrKZIEjTG75Ms6x/X3FAtklhl0AQgwASBDEI\nIEEQgwASBDEIIEEQgwASBDEIIEEQgwASBDEIIEEQgwASBDEIIEEQgwASBDHo/2d4Id0vqNho\nAAAAAElFTkSuQmCC",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Confirmed versus Deaths\n",
"linetypes <- rep(c(\"solid\", \"dashed\", \"dotted\"), each=8)\n",
"colors <- rep(c('black', 'blue', 'red', 'green', 'orange', 'purple', 'yellow', 'grey'), 3)\n",
"df <- data %>% filter(country %in% setdiff(top.countries, c('World', 'Others'))) %>%\n",
"mutate(country=country %>% factor(levels=c(top.countries)))\n",
"vs <- df %>% ggplot(aes(x=confirmed, y=deaths, group=country)) +\n",
" geom_line(aes(color=country, linetype=country)) +\n",
" xlab('Total Confirmed') + ylab('Total Deaths') +\n",
" scale_linetype_manual(values=linetypes) +\n",
" scale_color_manual(values=colors) +\n",
" theme(legend.title=element_blank(),\n",
" legend.text=element_text(size=8),\n",
" legend.key.size=unit(0.5, 'cm')) + ggtitle('Confirmed vs Deaths')\n",
"vs\n",
"vs + scale_x_log10() + scale_y_log10()\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAB/lBMVEUAAAATK0MVK0MYLEMb\nLEMdLUQfLUQhLUQjLkQlLkQnLkQpL0UrL0UtMEUvMEUxMEUyMUUzMzM0MUU2MkY3MkY5MkY7\nM0Y8M0Y+M0Y/NEZCNEdDNUdFNUdGNUdINkdJNkdLNkhMN0hNTU1ON0hPN0hROEhSOEhUOEhU\nOUhWOUlXOUlYOUlZOklaOklcOkldO0leO0lfO0pgO0phPEpjPEpkPEpmPUpoPUpoaGhpPUpr\nPktsPkttPktvP0twP0tyP0tzP0t1QEx2QEx4QUx6QUx7QUx8QUx8fHx+Qkx/Qk2BQk2CQ02E\nQ02FQ02GRE2IRE2KRE2KRE6LRU6MjIyNRU6ORU6QRU6RRk6TRk6URk6VRk+XR0+YR0+aR0+a\nmpqcSE+dSE+fSE+gSU+iSVCjSVCkSVCmSlCnSlCnp6epSlCqSlCsS1CuS1GvS1GxTFGyTFGy\nsrK0TFG1TFG3TVG4TVG6TVK7TVK8TVK9vb2+TlLATlLCTlLDT1LET1LGT1LHT1PHx8fJT1PK\nUFPLUFPMUFPNUFPPUFPQUVPQ0NDSUVPUUVTVUVTXUlTYUlTZ2dnaUlTbUlTdUlTeU1TgU1Th\nU1Xh4eHjU1XlVFXmVFXoVFXpVFXp6enrVFXr6+vsVVXtVVXuVVXvVVXw8PDxVVbyVVby8vL0\nVlb1Vlb3Vlb///9rAkijAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dh2Pb+rvW\nVfbm/th7mFFKWYdpNhe414wDFMKmmA1mJ8wwb6BcyAncFDgE2hhTMBTq/xJtffWV9FqW3vfr\nR/LznNPEUeyP9VrPp5JlJ40ODMOMTnTuFWCYOYQiMYxCKBLDKIQiMYxCKBLDKIQiMYxCKBLD\nKIQiMYxCKBLDKIQiMYxC9EWKorvy0vHrnozfr6NoefL1T7+jAas2KM37ke55vz52jfbvZbc7\nmttV/GDdZpcf48ur+143O3aHoR7Lc8ZCpEV56fh1T8ZfRfH2Pfn6cxEp+97pIvWbJlYnKh7e\nx+zydZ/bHbtDijSIGEXr4tLx6w7AP5lev7rdoJsp3M84kfreS0s20WobG7RI7VkmBxZ3gx+F\nS3CnFguRrvLuGolke/2xtxt/P2cTaZFd6Sk5pHjM9kWb8jjd4g7nFAuR9vmTmPTBzB/R5FP8\n53oRLePj7ttFdiieLSmOxKuj8pixjK5K5NN6ES3WT+k3klR3dh/fZL33rpRgN9kdFdfPVyWl\nNlej/oQgZi6uDx33slnGV3zM7zA+il0/+rd3Fx+821Qr1nU/5RJ3jUpANU286hnSv7viQa/u\np7qd/yDdLlqfBSVX3WR/GT5FznOdzge7+OQ97u4jfvRBmnosRDrcRrf5Je9xvk4f4Md1+uk2\nWbJJL26Sq9xF5eVkr5YtTHKffSO6b4iU3XrhXSm+1iq/7ImUUpur4d51zly338uiupNH5w6d\n27uLszi3qVas+36yJe4aVYBymmzVH1vuLp90VVtaPGr1B+m6uov6FlwmT5fSi3vnxE7ng+1s\n4Nrj7jzi3vZtPkiTj4lIh+Vif2gTaXGfbI9F9mmZLokPHe4XyV9/T+lfsU+rrDCrfQl8ijf5\n/rCPt+O24uXfiUn7VbJtaleKsY+H/VX6rNk5GMqpzdVw7/opPesYr1LUci/X6QHPdQpOn0TE\n7fBu7yzO4t7GWbG2+6mWuMQ64FBMkGEad5dPWj0A1dLGg1Q+9rXcJ/dXrFbrw+Bx3A1c3G2x\noquyCOKDNP3YiJQdETRFSv4G2ud/EWVL0kPwp2TrbKLUnX1ySJf+ZVtkk/+luc53VtV31unu\nJP1bs3al8o4Onkj58ZW/Gu5db7K96X4RtdzLMruiO1i2hu6qe49H/TblijXvx13iEpt36mAa\nd+ffj7PUf5C26RcLf5e0XDjTRW0Pg8cpr9hYr/IRP/YgTT82IsUP8VObSFUjaksOWUmLeA/0\nMt/i2/QvMPdbecUaV3LuoS5SvthfDfeuC+ZVVKGrvWMs/f31Kr3pVXyQf7fNr1Hd3lncvE3t\nPrvu58pboybAwTTuzr8fZ6n3IOW7qytvt3BV2/FHbQ9D14PduOiux7EHaeIxEmm/WDa3aX3z\nusJklztEKr/wdwTu5dqVjonUXI3mXa+iBvqQnp4o6r1NL+bnTKrbO4ubt2kZvXk/K2+NmgAH\n07g7SaT6g5QLtKxXYFPtqNsQ9Yut9nSIJD9Ik4+RSOn5hlNF8hn+F4YiNZmtDbqND/o3d9t8\nyX36lP/aW91qcfM2HaM377kmbwNQm8C7u5NFWtVWPveo3FH6T7PqF08TSXiQph8rkZLzDX1E\n2peX3We9tQe9+9BuMfDQzv/UctfO84vavTw61zmkp3EX9ds7i5u3aT4Yjecx2RKX2AT4nrh3\nJ4lUf5DylxfcQ7v9apE/OW2e/u7xYIsiiQ/S9GMm0lN+Hjdz5b5LpHTv/pj8vbfOttlTdc4n\nzybfmG0nG7IntwvvSqeK5N51/mrybXU/zr3k+wB/D+bevv4oHOq3ce6zeT/ukuaDce9P076P\nEEXyHqTsyb9zsmG7WBRPXPIXZK+rM9TdD3bbBm6uqPggTT9mIh3W2VH9Krra5+d020RK34iy\nSP7OfUpfYnhaZKe/HWB8ULPJTrY+Herfuo8WT/kZ2dqVThXJvevb9KzwXVTdj3Mvy0T8/JR1\ndgp3k/zF7t7eWZzFvY1zn837cZfUiS5gW8c07q5LpK3/SGavAtw7O5r9wtlD5G8RqpZ0Pdjt\nG7ixovKDNP3YibTPNn322tumSyTnRcH76gU773jaffnO21klWflXOlUk967zd25eO/dT3ctt\n8Xy5eik0/Tvcub27OI17G/c+m/fjLnGILmAZeQ9k4+7aRcpu5z1IV9WjmmbtnuF4yi7dHX2w\n2zdwY0U7H6SZ7JbsRCre8fi4LN730iZS+hah/Lh8uynesuM9uM4bUrxv3cbwTeNKJ4vk3HW8\n3o237lT3cpvcx+N9+lfpY/o2l6236rXF/m1q99m8H3eJQ3QAT8vqCDP75N9du0jZ7Rrvo4qi\ntfPEpfQo226NH6Nof7DbN3BzRbseJIrETDozKTBK+GheaiiSavhoXmookmr4aF5qKJJq+Ggy\njEIoEsMohCIxjEIoEsMohCIxjEIoEsMohCIxjEIoEsMohCIxjEK0Rdr1S9/rXSLGAAY1oXLj\nQEKR4DAGMKgJlRsHEooEhzGAQU2o3DiQUCQ4jAEMakLlxoGEIsFhDGBQEyo3DiQUCQ5jAIOa\nULlxIKFIcBgDGNSEyo0DCUWCwxjAoCZUbhxIKBIcxgAGNaFy40BCkeAwBjCoCZUbBxKKBIcx\ngJW0F+n/1RcDMePWZZahSHAYAxhFMg9FgsMYwByRXrxIZEo+JF/sTtOJInWGIsFhDGDeHulF\ncYkiqYUiwWEMYC2Hdi8cl8KulHLjQEKR4DAGMF+kF9kBHkXSC0WCwxjAug7tKJJaKBIcxgDW\nFOlF5VPolVJuHEgoEhzGAFYTKftDkXRDkeAwBrBuGkVSCkWCwxjAOmknviZLkTpDkeAwBjCo\nCZUbBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgPu3Fi+wl2ZGYgesyy1AkOIwBrE57\nUWYUZvC6zDIUCQ5jAKvRXrwYbBJF6gxFgsMYwFzaixfDTaJInaFIcBgDmEN78WKESRSpMxQJ\nDmMAq2i+R6eZRJE6Q5HgMAYwimQeigSHMYBVb1ptSeiVUm4cSCgSHMYARpHMQ5HgMAYwimQe\nigSHMYBRJPNQJDiMAYwimYciwWEMYBTJPBQJDmMA4+lv81AkOIwBjCKZhyLBYQxgfIuQeSgS\nHMYAxjetmociwWEMYPwxCvNQJDiMAYw/2GceigSHMYDtDi/jVF/mGr3svkEHRmVdZhmKBIcx\ngGXKnOxNIxSpMxQJDmMAK0V6uct2TNn+yVkQcKWUGwcSigSHMYCVO6OXL3N9ik/5gpArpdw4\nkFAkOIwBrHyOVPzZlSLtKJJKKBIcxgCW0RxvMq8okl4oEhzGAOY8R/IP7XYUSSUUCQ5jAKtE\neuk9OaJISqFIcBgDmPMcqThrxz2SbigSHMYAVtJGvpREkTpDkeAwBjCKZB6KBIcxgEFNqNw4\nkFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCr0V6+rL8VfCBm+LrMMhQJDmMAc2gvy4zC\njFmXWYYiwWEMYBXt5csxJlGkzlAkOIwBrDr9/XKUSRSpMxQJDmMAK2gvX44ziSJ1hiLBYQxg\nOc336GSTKFJnKBIcxgBGkcxDkeAwBrD855FacoaVUm4cSCgSHMYARpHMQ5HgMAYwimSePiIt\nso9xpM9ZQm6RmWIMYBTJPD1Eyn3JP3R9zhNyi8wUYwCjSOY5LtLiQJGCYgxgFMk8vQ/tKFIo\njAGMp7/NoyjSd5KYrCSjk6ZI516j+YR7JDiMAYxvETIPRYLDGMD4plXzUCQ4jAGMP0ZhHooE\nhzGA8Qf7zEOR4DAGMP6ouXn4zgY4jAEMakLtCmOE77WDwxjAoCZUbhxIKBIcxgAGNaFy40BC\nkeAwBjCoCZUbBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCDmlC5\ncSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAQpHgMAYwqAmVGwcSigSHMYBB\nTajcOJBQJDiMAQxqQuXGgYQiwWEMYFATKjcOJBQJDmMAg5pQuXEgoUhwGAMY1ITKjQMJRYLD\nGMCgJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsHEooEhzGAQU2o3DiQUCQ4jAEMakLlxoGE\nIsFhDGBQEyo3DiQUCQ5jAIOaULlxIKFIcBgDGNSEyo0DCUWCwxjAoCZUbhxIKBIcxgAGNaFy\n40BCkeAwBjCoCZUbBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgISf8pvz4TZw2yCxD\nkeAwBrCziPRN9VUdMstQJDiMAYwimYciwWEMYOcTqQ0yy1AkOIwBjM+RzEOR4DAGsPOI5H52\nIbMMRYLDGMD4HMk8FAkOYwALOuE3zh+KNDSaW+RCMQawsBMWT434HGlEVLfIZWIMYFATKjcO\nJBQJDvM6CUWaWCgSHOa1JiwP0oTKjQMJRYLD5CK9Ti4k+6ZkSfqp/Pj6XKtGkTpDkeAwhUiv\ns4uvM4Hc/3cnmxR6wm+ytENmGYoEh0mfIiV7pPzLyqfia3SRvqnSBpllKBIcpjy02xVS1UV6\nPeDYLvTpb8kk5caBhCLBYRyRHINqe6RzrVqvdzb4aUBmGYoEh6mLVN8jTeA5EkVSieIWuVRM\n/dDOdWcKZ+0aHjVMUm4cSCgSHMYAFm7CFo98k5QbBxKKBIcxgFEk81AkOIwBLNiErR55Jik3\nDiQUCQ5jAKNI5qFIcBgDGEUyD0WCwxjAKJJ5KBIcxocNeitDJ80WQ5G0orVFLhhTh70uokIb\nGYrUGYoEh3Fhr92MpimtlBCKpBWtLXLBGAf2+rWSSXwdyToUCQ7jwCjSZEKR4DAV7LWfUTSl\nlTqSox5RpF7R2yIXi6lgUxSJ7/7WieIWuVRMCWt4NNwkimQdigSHKWHTFIk/IasS1S1ymZgS\nNlWR+DsbFKK7RS4SU8ImKxJ/i9D4aG+RC8SUsAmLJEJmGYoEh6lgkzxrdxwyy1AkOEwFo0jT\nCUWCwzgwLY+gJlRuHEgoEhzGgVGkyYQiwWFcmJJHUBMqNw4kFAkOU4dpaIQ1oXLjQEKR4DA+\nbLxGWBMqNw4kFAkOYwCDmlC5cSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNA\nQpHgMAYwqAmVGwcSigSHMYBBTajcOJBQJDiMAQxqQuXGgYQiwWEMYFATKjcOJBQJDmMAg5pQ\nuXEgoUhwGAMY1ITKjQMJRYLDGMCgJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsHEooEhzGA\nQU2o3DiQUCQ4jAEMakLlxoGEIsFhDGBQEyo3DiQUCQ5jAIOaULlxIKFIcBgDGNSEyo0DCUWC\nwxjAoCZUbhxIKBIcxgAGNaFy40BCkeAwBjCoCZUbBxKKBIcxgEFNqNw4kFAkOMxJsJubm/RT\n/tVI2rFQpM5QJDjMKbAb58942tFQpM5QJDjMCbCb4uPN7uamdqnYVemuGkXqDEWCw5wAK125\nucktci65uymkCZUbBxKKBIc5AXbjXmgYRJEChiIBYN4MhQki3dSO7c49YQ0yy1AkAMxIkW5a\nROKhXeBQJADMm+T/5MObN+lXyafTz9r5InGPFDIUCQCTOpTtmMqLp7+O5B/acY8UMhQJAPOm\nOrorfeI7G6YVigSAKUR68+YNRZpoKBIApjqs4x5pqqFIABj/+RFFml4oEgCmOrTjHmmqoUhw\nGAMY1ITKjQMJRYLDGMCgJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsHEooEhzGAQU2o3DiQ\nUCQ4jAEMakLlxoGEIgFhsnc2KMFqQZkwhcwyFAkF86aMAswPxIQFZJahSCCYN2/qJg2B1X9P\ngxuECUvILEORMDBv3ngmDYDd3HSaBDBhBZllKBIE5s0b3ySKNK1QJAgMRZp6KBIERkUkPkc6\nYygSAsb36A3f/T21UCQEDEUq6phmsdl2XeF2kV6r5UZRdPXYvGoz9+vDYRMtruOL+2iZLFnf\n96q2HG2RmDJfxel51aZIpmuGm8KJqKvbqUMdIkXRY+OqjTzGel1H93fRdeJTdjeLx7Zrnrjm\n4xG1hPyrDRnzVZk+t+Qeqahj2sftOlrshSs0REo/7TfZDsZb7GVxG/+JvxMtih1S577rpFAk\nE8xXX40z6VLf2VCUfx2lh17rKFqnRj1eJQd82c4nvdYm/bJ+o+xC/aoOI82mODRMGXf50oo1\nOBTJAvPVVyeaRJHyOuZ9fIpWh2TPESfZa9xnR26bUqSr7MvajbI9knfVipFdJ71RvkdalDui\nTdSxA+wfimSA+eqrU02iSHkd3Z3LddL6TRQfiy2TfcdTviNJPqz28XcX5XWd50jeVStGmuv0\nWdF1dHcf3d6WS2P7rscWnyIZYE4XSeUtQn1WDQAj1tEVaZl+EV0lH7f31ytHpG39ulnWT4fG\nVV1GnKv0lomE1/EOaZ+fvTtsyysMDkUywAwQSeVNqz1WDQAj1tEVqRAk/nJVXHJONtSfGt2n\nB4MtVy0ZtdscDnfRpjh713Vi4pRQJH2M79GpJmmuk7dqCBixjnkfH5NdRCXBOlre3m9FkeLj\nt9SkxlW7RFpG+/y50oEiYWKGibTjD/ZVhb7KnhnVFu9lkeKrXzevuqwXvBLmPj0f0WANDkXS\nxwwWyWCddGkBX0c6JPuYTXIEtkoWPx72qyMiPUXRU+OqFSNN/hzpkO6QDuUeic+RIDEUSYZI\ndXTfo7BPT10ndmzKA7QoKX67SIfr5DS3d9WKkV8lf8tEeuyYnb078KwdKkbBo4sWabnJXtaJ\n90zRKn37TnohseNWECk7uKtf1WEk2RcvPl2lbl3nZ+34OhImhiKJkHNm01r4iO9sgMRQJBFy\n1ixum8v4XjtUzHiPKJJRHluk4bu/YTGjPRq+Tg8PD+mn9P/RtHpmIFL680j1QP48UsgtgowZ\n69HgdXqo/lCkgKFIZpgRFjVhffOQf0z2S8nH9KuHh0O6rNxdBV4pDzLLUCQ4zChYIVJmTblj\nqr7ajTGJInWGIsFhRsFqIu1aPp1jpTzILEOR4DCjYG0iPTwUe6P5HNplvXXejnruUCQ4zChY\nxx7pUO2NZnFol7+3ofxw/lAkOMw4mHfWrnloNweRogNFUtwiM8WMhBWvIz1U6uRn7Xbwh3Yv\npHT0liJpbJM5YgxgUBMe7dAP8iP2liJpbJM5YgxgUBMK7fnBUtp7C+IRRcLDGMCgJhTa80Ok\ntPeWIqlskzliDGBQEwrt+aFSWnuL4hFFwsMYwKAmFNrzw6S09RbGI4qEh9GEPeSvxiJNKLTn\nh0tp6S2ORxQJD6MHeyiDNKHQnh8hpdnb2m/aOnMoEhxGDfbgZDwtibVIP1KKclOVQ5HgMFqw\nhwd1k6xF+lFSlJuqHIoEh1GCPTzom2Qt0o+WotxU5VAkOIwOzPdIxSRrkX6MFOWmKociwWF0\nYJMU6cdKUW6qcigSHEYF1vRIwyRrkX6cFOWmKociwWFUYNMU6cdLUW6qcigSHEYFNk2RvkuK\nclOVQ5HgMCqwaYr0E6QoN1U5FAkOowKbpkg/UYpyU5VDkeAwKrBpivSTpCg3VTkUCQ6jA5vk\n6e+fLEW5qcqhSHAYHdgkRfopUpSbqhyKBIdRghl4ZC7ST5Wi3FTlUCQ4jBZM3yNzkX6aFOWm\nKociwWHUYOoemYv006UoN1U5FAkOowerPEKaUGjPz5Ci3FTlUCQ4jCas2B0hTSi052dKUW6q\ncigSHMYABjWh0J6fJUW5qcqhSHAYAxjUhEJ7frYU5aYqhyLBYQxgUBMK7fk5UpSbqhyKBIcx\ngEFNKLTn50pRbqpyKBIcxgAGNaHQnp8nRbmpyqFIcBgDGNSEQnt+vhTlpiqHIsFhDGBQEwrt\n+QVSlJuqHIoEhzGAQU0otOcXSlFuqnIoEhzGAAY1odCeXyTFbS3MbyouQ5HgMAYwqAmF9vxi\nKV5pwUyiSHAYAxjUhEJ7fokUr7QUSW2LzBRjAIOaUGjPKyleaSmS2haZKcYABjXh0Q79Uj+t\npaVIaltkphgDGNSEQnt+mZR6adHONlAkOIwBDGpCoT2/XIrb2lgjiqS2RWaKMYBBTSi051dI\nMW7uyFAkOIwBDGpCoT2/UopXWoqktkVmijGAQU0otOdXSfFKS5HUtshMMQYwqAmF9vxqKW5r\n+c4GzS0yU4wBDGpCoT2/RopyU5VDkeAwBjCoCYX2/Fopyk1VDkWCwxjAoCYU2vPrpCg3VTkU\nCQ5jAIOaUGjPr5ei3FTlUCQ4jAEMakKhPb9BinJTlUOR4DAGMKgJhfb8RinKTVXO3ER65XzM\nL73quJKHaV5t/NqgwKYi0m+SotxU5cxOpNQHimRDsxbpN0tRbqpyZidSKkT6J3Eq+fCqsOvV\nq/wKr9yvXiWYV+5CvbVBgU1FpN8iRbmpypmtSNWnV69qC1q+OlTLx+yYKFI/SHd+qxTlpipn\nfiLtXvki7Vo+7dyvDs73VNcGBTYVkX6bFOWmKmeGImV7pfSnk+s7n1fuXsf96uAsVF0bFNhU\nRPrtUpSbqpz5ilR+Xd/dtO2fSpF2o/ZKFKkfpDu/Q4pyU5UzR5Hc5ztdh3a1Z0WH+vf01mZE\nLlKk75ai3FTlzFIk97ScdxrP+crZI+UHejy0C4ER2vM7pSg3VTlzE2kGGAMY1IRCe36XFOWm\nKociwWEMYFATCu353VKUm6ocigSHMYBBTSi053ukKDdVORQJDmMAg5pQaM/3SlFuqnIoEhzG\nAAY1odCe3yNFuanKoUhwGAMY1IRCe36vFOWmKociwWEMYFATCu35fVKUm6ocigSHMYBBTSi0\n5/dLUW6qci5MpPwNd2Mx7aFI/SDd+VqKclOVc1Eilf/UDsTaBIRBTSi05w9IUW6qci5JJOcf\nrQJYm5AwqAmF9vxBKcpNVc4FiVT759/OvjZBYVATCu35Q1Lc1vJXFmtukUsX6ePHj4q0YBih\nPX9YildaMJMuRyTvXyQ989oowD7mf3Ro4TBCe/6IFK+0FElti1y2SB/Lj9me6WP238fdLttR\nlUuTJYf+zo1aqV6Q7vxRKXal1QhFOs/ajId9dC/k+pR/6ksnI1KWP+anWVo+R9LcIhTp40dH\nmV39T23pRxWPzEX641Kc0kYGzR0ZinSetRkPKw/tPn50far+1C2bhEh/QopXWoqktkUu+6xd\nJVL1tfPH/zQJkf6kFK+0FElti1y2SB3mOF86e6SDikfmIv0pKV5pKZLaFrn0dzYUryMV5+f8\nQ7vd5ET601K80lIktS3C99r1p01DpD8jxW0tz9ppbhG++7t3dDwyF+mtFOWmKmfmIqXvv3e+\nbLkUcG3OBoOaUGjPn5Wi3FTlzF2k8sOufuksa3M2GNSEQnv+nBTlpirnUkTKdkzZpeTT1/kX\nyf/Jt77ucEx1bc4Gm4pIf16KclOVcyEildLscmmcZV/vDvkS67Wxh33MX53VodlghPb8BSnK\nTVXO3EXKnyTVRGpcOhR7K+O1sYZ9LKNBa4m1SH9RinJTlTN3kfIPlU8zFunjx06TJiLSX5Ki\n3FTlXIpI5ZfzFenjx26TJiLSX5ai3FTlXJBIXc+RZiLSx4+CSRMR6a9IUW6qcuYuUvE6UstZ\nu115uDcHkXyP6iZNRKS/KkW5qcqZuUjt8Z1BqtlQ2CxE+mtSlJuqnIsTqf5Wh8GYtpxTpKZH\nNZOQJhTa89elKDdVORcnEj5mEGweIv0NKcpNVQ5FgsMMgs1DpL8pRbmpyqFIcJhBsHmI9Lek\nKDdVOb5It4vD4TFaXA/lhdwiM8UMgs1DpL8tZWglw8QT6TaKDttFFEVDTQq5RWaKGQSbh0h/\nR8rARgaKJ9Iyeoz/3D5Fi4G8kFtkpphhsFmc/v67UgY2MlA8keId0n20zH9z2JCE3CIDMV83\nzoAj1WwobBYi3UgZ2MhA8YRZRNt19JQ8SxrIC7lFBr+O5KuEVLPBMMkjqAmF9vw9KQMbGSie\nSNfx06NFskPaDOSF3CJDMM6/AAewNqowwSOoCYX2/H0pAxsZKP4h3CZa3Mc7pqEeoYtU+7cU\nz742yrBuj6AmFNrzD6QMrWSYnPJcKDvcW8Rp+5wl5BahSF46PYKaUGjYP5RycreD5gSRcm/y\nD/7nPCG3yOkY75/3PfPaGMDaNcKaUKjYP5JyerlDpnFol7yI1Pr79xYHiqS7NuFgUBMKbfzH\nUsYV3TqeMJso6hLpQJGU1yYcDGpCoY3/RMqonpuncfpbeEvDEZG+k8RiHfXiiXTu1WG8/FMp\nzvXwf2WxuH7cI+muTTgY1IRCw/6ZFK+0YCY1Du323dedvkgzP2tnTrMW6Z9L8UqLLdLharXt\nvC5FUl6bYDCoCYU2/gspR5p75rirE7lpue4MRJrzOxsC0KxFyvIv/RxtLkAuTaT5vtcuBM1a\npO+TUqst+skGMTN4Z0MSXyOsmpnAoCYUGvavpIxoboDwR83hMAYwqAmF9vxrKcbNHZmO09/u\nTuakhNwiM8UYwKAmFNrzb6R4pQUWaXHkOVKfhNwiM8UYwKAmFNrz/VK80gKLdOt4dDuQF3KL\nzBRjAIOaUGjPv5Xithb+ZMPo9Qu5RWaKMYBBTSi0599JGdlM4/BkAxzGAAY1odCeb6QoN1U5\nzZ+Q5XOkM2MMYFATCu15kDKwkYFyyo9R9EnILTJTjAEMakKhPf9eysBGBkrjxyieVtF2v4oe\nB/JCbpGZYgxgUBMK7fkPUgY2MlCaJxuuo/vDPloN5IXcIjPFGMCgJhTa8wNSBjYyUNp+QeTt\nvH9BJDrGAAY1odCe91IGNjJQPGGuortttDw8UqTzYQxgUBMK7fmPUgY2MlA8YRKDVsm5hvVA\nXsgtMlOMAQxqQqE9/0nKwEYGir/nuV8eDuvhv2iVImnlIkX6z1KGVjJM+IIsHMYABjWh0J5v\npSg3VTkUCQ5jAIOaUGjPf5Gi3FTlNES6vUqeJhRwW30AAB39SURBVD0N5YXcIjPFGMCgJhTa\n81+lDK1kmHgi7ZfpuxoiviB7PowBDGpCoT3/TcrARgaKJ9I62iSvId3xBdnzYQxgUBMK7fkg\nZWAjA6XlxyiKP4MScovMFGMAg5pQaE/bv4RbZmAjA4UiwWEMYFATCu15ljKwkYHSfmi34Quy\n58MYwKAmFNrz36UMbGSg+Ccb8t/bsOj+fatyQm6RmWIMYFATCu35H1IGNjJQGodw18soWm6E\n3wAuJ+QWmSnGAAY1odCe/yllaCXDhC/IwmEMYFATCu35X1KUm6ocigSHMYBBTSi0539LUW6q\ncuoi7a+Tt35fDf1dXAeKpJaLFOn/SBleyhCpiXRf/IrIxdA3NlAkrVykSP9XytBKhokr0jaK\n1smb7B6vIunfGxMTcovMFGMAg5pQaM//kzKwkYHiilS9erQe/ANJIbfITDEGMKgJRzYWNPXf\n/V28epT8uPmwhNwiM8UYwKAmHNlY0NT/obG2i6cl5BaZKcYABjXhqL7ChiLBYQxgUBOO6its\nKBIcxgAGNeGovsKGIsFhDGBQE47qK2xO+ceY+yTkFpkpxgAGNaFGbfFCkeAwBjCoCTVqixe+\n1w4OYwCDmlC5cSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSC5PpHdxal+n/zeu1XpT/bUJA6NI\n5rk4kd6VH7xlRxdRJIrUnUsV6V1+Mbn0Lk+6tyqW7Zyvstu8o0gUqTOXKdKuJlK5l8oXvnvX\n/tU7iqQCmWUu73Wkd+5up1LGVWfn+tZcqLk2YWAUyTyXJ1KSd02R8mO5d96XFEkdo1FbvFzm\noV1TJPccRF0diqSMUW4cSC5WJPfPu/piZylF0scoNw4kvkib2R/aFa8juSL5Z+2KQzv/uE9/\nbcLAKJJ5PGE2l/EcCRpjAIOacHRnIeMJs4ieVtF2v+I/NHY+jAEMasLRnYVM8591uY7uD3v+\nQ2PnwxjAoCYc3VnINEW6j275E7LnxBjAoCYc3VnIeMJcRXfJr+J6pEjnwxjAoCYc3VnIeMIk\nBiW//pv/0Nj5MAYwqAlHdxYy/p7nfpn8ntXBv2iVImmFIk0rF/eCrIQpXk4679oYwKAeb+XG\ngYQiVZjqxynOujYGMKjHW7lxIGn5V82TLBYDeSG3iC7mnZOzro0BDOrxHtVX2NR/if6lvPu7\nDUORAmE0aosXV5hbx6Oh/2hfyC2iinn3brRJFKkfZJbpOLQbnJBbRBPz7t14kyhSP8gsw5MN\nO4oUFqPcOJD4Iu03yyhabob+y5cUSSsUaVrxRNrmJxwW2/arH03ILUKRQtMoUmc8kdbRKlZo\nu7q4twhRpGCY0Z2FTMfJhos7/U2RgmFG9RU2FGnH099hMaP6Chse2hUYviAbCDO6s5DhyYYd\nRQqLEeuY56rfrzqoHzgdO4y6XUXR6q7ru/HeI1r2PRJrXo+nvyvMOI0oUl+IWNAivUw6RaRi\nH9H1SxQWp7w17rhIYxNyi/DHKELTAoiUftpvoqVyMWNR1vFh1v2i691vJ50WkEUa/f6gw8RF\nwsAYwKAm7FXQ9MJ+HUXrffbVVXR12C6jq+TLx6v4yccmv1YUba/avkqO1Zb3JfAuvn2S+yj5\nwYZtQt4enOtnu6MM8bRY+XdZrkqCvaJIU8AYwKAmlOpT3yOlR1vLdHGsTnS3zH4Hwn12ELYp\n1Fm0frWvH6tdFQeLT4fie4u9c31XpORcW/0uq1VJb3pFkSaAMYBBTSjVp/Yc6TrxYZP9Uqt1\nvEuJv7xLOrqM7mIfss6nvd8fbpP9TP2r6/jZ0H5V38UV2STPlFaZfO6tc0S2e3PvslqVTR1b\nrXltitEeUSStXLZI62S/sUz7mBySxQdgyYd90dHt/fWqEmlbGuB+tUwubdtFyr+39G9dQ7h3\nWa2Kh63WvGWKy/zBPhiMAQxqQlmkQ3Lotqr10Sl59mHlLs+q2v6V/6Srdjdt1/du6CyrrcrR\n50gUCQBjAIOaUKpP1rtNZlKXSOtoeXu/PVGk8jnS4TGASKdq00zILTJTjAEMakKpPnkFl9H1\noTieamt1fGF/TCTvGKw4a/e4WNcP7dxbd4pUrUq/Q7sTjOlIyC0yU4wBDGpCqT55BZ+i6CnZ\nMW0SAVZNkR7z5/uSSPkJhbLT5etIT/WTDe6tO0WqVuU6OTvBkw1TwBjAoCaU6lNU8DrZW+Qn\nsJ+are7zHMk7/Z28IlScNa+d/nZv3SlStSo8/T0ZjAEMakKpPmUF04O75GXT1WOj1Yd08TGR\n0hdk79xO368XxXvtnBdk3Vt3ilStymF7dfQFWY2E3CIzxRjAoCZUbpycaOgvaDz5jpR5IbfI\nTDEGMKgJlRvXlfQ13c3gnwc6+e6UeSG3yEwxBjCoCZUb15X8mdTQnwc6NRQJDmMAg5pQuXGd\nuV3mz4OC5GJFep/Fxbw/39oYwwAebwcyy1ysSDtHHIoUEqPcOJBcvEjvsz/v0/+yi+/fl4sD\nro0lDOPxLiCzDEXa5fbkPuULKJIZRrlxIKFIuxZ93hdfBFwbSxjG411AZhmKtKtEep9/fE+R\nDDHKjQMJRdo5e6Ti0o4i2WGE9nyWotxU5VCkXYtIQ54hUaS+kO5QpDIht4jO6e/3tbN0xVk7\nimSGEdpDkcqE3CK2GIpkhBHaQ5HKhNwippgBr85SpH6Q7lCkMhpb5CZJ2/L0/96Y/sHCGMCg\nJhTaQ5HKaGyRm/JD+7d6YvoHC2MAg5pQaA9FKqOxRQqRbtIPNzfFPop7pHPTKFJnoEXKzanE\nokjnpVGkzkCKlD9JKqyhSCi0kCIlP5VHkUZtEUeczKpduWcyE8n56aQxGL1cuEjFb2SkSGne\nxunYIu3L07giuQIZivT+vYJJFKkfpDsNj1yT3Nbmv2er+HVb/uczxFSkt+WH5hbpL9KNuUjv\nnYzAUKR+kO70Fsn5FDU/nyMhRHqbX3yb7qLSZfnCt9lib7d14xzO7dKzdcZn7ShSSIzQnqZH\njknN1l6WSDtHpEKn3eHtW0eujt1Wj20yYntWef9exySK1A/SnZ4iRe7nSxCpeI70Nv/PEan2\n1XlFev9eySSK1A/Snb4iFU+R8gbPX6Qkb12RMrMKkYqvKJIxbG4i5R8uRqTiZENtj7Sr7ZF2\nFCkAbGoiHTvZkDf34kTy//DQLjCMIpknzOtIpSvlWbu37lk7imQMm5xI8guyF3doZ7xFKFJo\nGshbhCLnD0VS2SYqFJ7+DooR2vNZitvajnc0zPWdDeO3yE3XD/mdhjkSviAbEiO0p69IgMEW\n6eZGNokihaVRpM5Ai3Rzc8Qkvmk1LI0idQZZpJubYybxxyjC0ihSZ4BFugkpEhDGAAY1odAe\nilRGcYvcHDcJqR8UqS+kOxSpjOIWoUhwNIrUmeAiZW9qoEhBYVATCu2hSGWOPIhv81CkoDCo\nCYX2UKQy8mP4tkyPB5wnG+BoFKkzYd9RUYnU59quSNZrxiCEIpUR/y56+/akXVLAF2SRMAYw\nqAmF9lCkMuJDeKpIod4ihIUxgEFNKLSHIpURH8KTRQr0plUsjAEMakKhPRSpjPgQni7SsW2i\nQgHDGMCgJhTaQ5HKyI+hskdQ/aBIfSHdcb3xf0CWIjmhSOeBQU0otMfTSPydDWABfkG2zzaZ\nI8YABjWh0J6mR+2/aRUwwG8R6rNN5ogxgEFNKLSnxaPKpJbeAv3IOfCbVi8VYwCDmlBoT2+R\nour3nID8NiGKBIcxgEFNKLSnzaPSpFprKZLiFpkpxgAGNaHQnr4iHSiS5haZKcYABjWh0B6K\nVCbkFpkpxgAGNaHQHopUJuQWmSnGAAY1odAeilQm5BaZKcYABjWh0J4TT39TJKgNi4YxgEFN\nKLSHIpUJuUVmijGAQU0otKf/OxsokuIWmSnGAAY1odCez02TPgsi8Z0NUBsWDWMAg5pQaM/n\nz55K7gLlpiqHIsFhDGBQEwrt+SxFuanKoUhwGAMY1IRCeyhSmZBbZKYYAxjUhEJ7KFIZxS3y\nkMRb1IHxl58YpJqZwKAmFNpDkcoobpGH8kN9UQuGIoWhUaTOTEGkbMf0kO6isgXpwvjTofze\nqCDVzAQGNaHQHopURnGLFCLlpjw81L5KFxyqr8YEqWYmMKgJhfZQpDKKW6R4juTI4n9KMRQp\nGI0idQZZJOdzp0iZbBQpDI0idWbiIvHQLiiNInVmwiLlz5G4RwpHo0idmYBIzpm5VJr8y+Ks\nHfdI4WgUqTPAIh3NA1Q/KFJfSHdcb/im1SBbJNsvIfWDIvWFdMfTSPgxCrhMVaQZYwxgUBMK\n7Wl6xF9ZHGCLzBRjAIOaUGhPi0cdP2oOF4oEhzGAQU0otKfNo9bftHrkJ2P5E7KnbpM5Ygxg\nUBMK7ekp0rHf1cDf2XDyNpkjxgAGNaHQnlaPCpO80lIktS0yU4wBDGpCoT09RSqaS5GGbpEH\n74f9kPpBkfpCukORyphukYcHzySkflCkvpDunCBSdKBIQ7fIw4NvElI/KFJfSHcoUhnDLfLw\n0DAJqR8UqS+kO31Pf/M3rY7YIg8U6ew0GJGi6iNFOjEPLSYh9YMi9YV0p+87GyLnE0U6MRTp\n/DSQ99pl3zjwnQ0UKTAMakKhPZ+bJn1uEQkxFAkOYwCDmlBoz+fPnkruAuWmKmeiIg3HKK2N\nIcYABjWh0J7PUpSbqpzpiMTT3+enUaTOTEgkviB7dhpF6syUROJbhM5No0idmZRIfNPqmWkU\nqTPTEukiMAYwqAmF9lCkMiG3yIcm5kPtU98g1cwEBjWh0B6KVCbgFvmw+9Al0olBqpkJDGpC\noT0UqUzALZKJ9GGX//nwIfuQ/ZcvCLc2ehgDGNSEQnsoUpmAW6QmUvXpwwd3QbC10cMYwKAm\nFNpDkcqE2yINg3Y73yCKpEyjSJ2ZsEgfPnz44B3a7eoLKJIyje+168yERdq17IA+tC0PsTaK\nGAMY1IRCezyN+O7vAFskleTwoeU5UnWJIinTQol07Af7ADN5kYpDuOKjc2jHPZI2LZBIPX5n\nA1wmK9J8MQYwqAmF9lCkMiG3yEwxBjCoCYX2tHrU/eu4+KPmOlvk2zgaHKiamcCgJhTa01+k\niL/XTm2LfPutlklINTOBQU0otKfdo9ykem0pktYW+fZbNZOQamYCg5pQaE9fkSL+plW1LfLt\nt8dMeu7NQqqZCQxqQqE9FKlMsC1Ckc5AAxEpOlAktS1SifT8nCjzvEs/7Z6LT6lI+Vfma6OJ\nMYBBTSi0p59IpScUSXuP9Jy/9e5DZk/2f/apz44JqWYmMKgJhfb0O2uXL6VIKlvk2T2ye849\nyt4UVDeIIunRMEQqi0uRNEQqT3/Hh2/PH8o8P7u7oudex3ZINTOBQU0otOeEdzZQJKUt8ly8\nIJuI8sGJu0fioZ0uDUwkvrNBY4s8V38+1ER6ronEPZIije/+7sx0RUoO2w7Z5w+eSbvymC4/\neRdgbfQwBjCoCYX2fP7cUKlapNxU5UxYpArjiTQUo7Q2gDCoCYX2fP7sqeQuUG6qciiS+toA\nwqAmFNrzWYpyU5VDkdTXBhAGNaHQHopUJuQWaRdpOEZpbQBhUBMK7aFIZUJukQpDkcLQKFJn\n5iHSbpRHUDUzgUFNKLSHIpUJuUVczBiPoGpmAoOaULlxIJmLSLsRHkHVzAQGNaFy40AyG5Gy\n12B7/dREkLWBgkFNqNw4kMxHpOfnwSYh1cwEBjWhcuNAMhuRnp+Hm4RUMxMY1ITKjQPJXER6\nfh5hElLNTGBQEyo3DiQzEemZIoWgUaTOzFGkk01CqpkJDGpC5caBhCIZrA0cDGpC5caBhCIZ\nrA0cDGpC5caBhCIZrA0cDGpC5caBZI4iDccorQ0cDGpC5caBZCYi8fR3EBpF6sxcROILsiFo\nFKkzsxGJbxEKQKNInZmPSHzTqj2NInVmRiLNBWMAg5pQuXEgoUhwGAMY1ITKjQMJRYLDGMCg\nJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsHEooEhzGAQU2o3DiQUCQ4jAEMakLlxoGEIsFh\nDGBQEyo3DiQUCQ5jAIOaULlxIKFIcBgDGNSEyo0DCUWCwxjAoCZUbhxIKBIcxgAGNaFy40BC\nkeAwBjCoCZUbBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCDmlC5\ncSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAQpHgMAYwqAmVGwcSigSHMYBB\nTajcOJBQJDiMAQxqQuXGgYQiwWEMYFATKjcOJBQJDmMAg5pQuXEgoUhwGAMY1ITKjQMJRYLD\nGMCgJlRuHEiGiLTIPsZxP2cJuUVmijGAQU2oUVu8DBAp9yf/UH2RJuQWmSnGAAY1oUpv4XK6\nSIsDRTLFGMCgJtQpLloGH9pRJCuMAQxqQo3a4kVRpO8kUVsxhplSuEeCwxjAoCbUqC1eKBIc\nxgAGNaFGbfFCkeAwBjCoCTVqixeKBIcxgEFNqFFbvFAkOIwBDGpCjdrihe9sgMMYwKAm1Kgt\nXvheOziMAQxqQuXGgYQiwWEMYFATKjcOJBQJDmMAg5pQuXEgoUhwGAMY1ITKjQMJRYLDGMCg\nJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsHEooEhzGAQU2o3DiQUCQ4jAEMakLlxoGEIsFh\nDGBQEyo3DiQUCQ5jAIOaULlxIKFIcBgDGNSEyo0DCUWCwxjAoCZUbhxIKBIcxgAGNaFy40BC\nkeAwBjCoCZUbBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCDmlC5\ncSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAQpHgMAYwqAmVGwcSigSHMYBB\nTajcOJBQJDiMAQxqQuXGgYQiwWEMYFATKjcOJBQJDmMAg5pQuXEgoUhwGAMY1ITKjQMJRYLD\nGMCgJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsHEooEhzGAQU2o3DiQUCQ4jAEMakLlxoGE\nIsFhDGBQEyo3DiQUCQ5jAIOaULlxIKFIcBgDGNSEyo0DCUWCwxjAoCZUbhxIKBIcxgAGNaFy\n40BCkeAwBjCoCZUbBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCD\nmlC5cSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAQpHgMAYwqAmVGwcSigSH\nMYBBTajcOJCYiPTJ+Wi4RWaKMYBBTajcOJDYiJQ6RJFgYFATKjcOJEZ7pE+7TKRPn7JLn8oF\n2bJD8fXIbTKaAIgxgEFNqNw4kNiKVKpTmZV9pEhBYVATKjcOJFbPkT7VRNplBn0q3Pl0qC6P\n2ibjEXgYAxjUhMqNA4nZyYZPnSLFh3YUKSwMakLlxoEkvEjZoR1FCgmDmlC5cSCxO/39qS6S\n8yxpl+yRNDyC6gdF6guZZYxfR/pUnq7bVRc+7ShSWBjUhMqNA8n53tlAkcLBoCZUbhxIziaS\nhkdQ/aBIfSGzDN9rB4cxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCDmlC5\ncSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAEkikT9lbHHS3yEwxBjCoCZUb\nB5IgIn3Ko7xFZooxgEFNqNw4kIQQ6dOnhklIGxYNYwCDmlC5cSChSHAYAxjUhMqNA0kAkT59\napqEtGHRMAYwqAmVGwcSigSHMYBBTajcOJBQJDiMAQxqQuXGgYQiwWEMYFATKjcOJDzZAIcx\ngEFNqNw4kFAkOIwBDGpC5caBhC/IwmEMYFATKjcOJHyLEBzGAAY1oXLjQMI3rcJhDGBQEyo3\nDiQUCQ5jAIOaULlxIKFIcBgDGNSEyo0DCUWCwxjAoCZUbhxIKBIcxgAGNaFy40BCkeAwBjCo\nCZUbBxKKBIcxgEFNqNw4kJxZpC/CdaTveZiRwcIYwKAmVG4cSCgSHMYABjWhcuNAAiDSly/p\nx+RydrFc0hszMlgYAxjUhMqNA8n5Rcqd+eJcrD71xIwMFsYABjWhcuNAgiHSrtKGIhnAoCZU\nbhxIzi+SeyD3Jb38Jf/UHzMyWBgDGNSEyo0DCYBIO3c31LKP6oEZGSyMAQxqQuXGgeT8InlP\njHhoZwCDmlC5cSA5v0j1Qzt/ST/MyGBhDGBQEyo3DiR8ZwMcxgAGNaFy40BCkeAwBjCoCZUb\nBxKKBIcxgEFNqNw4kFAkOIwBDGpC5caBhCLBYQxgUBMqNw4kFAkOYwCDmlC5cSChSHAYAxjU\nhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAgiRS/mbVU7bJSdeeCMYABjWhcuNAAiTSly8n\nm4TUD4rUFzLL4Ij05cvpJiH1gyL1hcwyMCJ9+TLAJKR+UKS+kFkGRaQvX4aYhNQPitQXMstQ\nJDiMAQxqQuXGgYQiwWEMYFATKjcOJBQJDmMAg5pQuXEgoUhwGAMY1ITKjQMJikg8a2cJg5pQ\nuXEggRGJryMZwqAmVG4cSHBE4jsb7GBQEyo3DiRAIvG9dmYwqAmVGwcSJJEGbJM5YgxgUBMq\nNw4kFAkOYwCDmlC5cSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYABjWhcuNAQpHgMAYw\nqAmVGwcSigSHMYBBTajcOJBQJDiMAQxqQuXGgURbJIa5yHCPBIcxgEFNqNw4kFAkOIwBDGpC\n5caBhCLBYQxgUBMqNw4kFAkOYwCDmlC5cSChSHAYAxjUhMqNAwlFgsMYwKAmVG4cSCgSHMYA\nBjWhcuNAQpHgMAYwqAmVGwcSigSHMYBBTajcOJBQJDiMAQxqQuXGgYQiwWEMYFATKjcOJBQJ\nDmMAg5pQuXEgoUhwGAMY1ITKjQMJRYLDGMCgJlRuHEgoEhzGAAY1oXLjQEKR4DAGMKgJlRsH\nEooEhzGAQU2o3DiQUCQ4jAEMakLlxoFk2j9q/p1zr0AtWGtTC/CqzSQUSS9Ya1ML8KrNJBRJ\nL1hrUwvwqs0kFEkvWGtTC/CqzSTTFolhQEKRGEYhFIlhFEKRGEYhFIlhFEKRGEYhkxJp0bE4\njnwNi3Wp7hRgbfx16Ficr9qic+WZoZmSSF3NLT90XcNiXao7BVgbfx2OPFCUSD8TEmnRKMCi\n+rhov4bhyhz8Qp5xbeo5+kBRJP1MSKTqL/rib9xmP8JWZAG1Nk7kB4oeGWR6IrnHTvWl5xAJ\naG2cyA8UnyIZZLoiLRZ5Idy/aAP2Iysjytp46+Z+aF017paUM0GRqr9Qa3/RnqEeC6i1qa9Y\n96o5V2HUMkGRvK/L6jrFCbc+QGvjRHyg3EWMVuYj0sH7ZphVwVgbP/IDxUM7g0xUpEXr0nOJ\ndPa18SM/UGd9+jbXTE+k5nsKzvrOBoy18XLkgeJZO/1MSiSGQQ1FYhiFUCSGUQhFYhiFUCSG\nUQhFYhiFUCSGUQhFYhiFUCSGUQhFOpaojLv0duFdyfnWKopWd124bfzdZdTzYe97Pebs4ZY6\nlnaRvIpXX24X2ZVXHbhFkyXd92nrypwt3FJ90ix0p0iLaL09HO4X0W1f1En3y4CGW6pPykJv\n11EqSr5TebyKosXGvcJddJV+vo8WztXj72+v0mtmu6Pk6lH0tFgll67im2yX0dU+vt4+ucE+\nvadVvJgiTSbcUn1SFHqfHpgt9rlI99lh2sYR6Sp6zC48uVePv7/IrumKtIrW8cfYxeguftYU\nf5Ef+C2Lm15RpMmEW6pPikJvkqc+q9KcZXQXG5NZ4V2zcfXV/nCb7KXSK2Q3yXZl63gvFl+8\nS5ZdJ8s2yVFhctP9iiJNJtxSfVIUehnFx2nbZJeRL9neX6+6RXKvvj0U/pQX8mO+5MM+W7ZM\nb50cHeY35eaZSril+qQodPa5MmdVnIJrF8m/uidSeRVnWR1IkSYTbqk+6RBpHS1v77c1kcrn\nSIdHinRJ4Zbqk45Du/TDviZScdbucbFuHgkeFWlZbg4e2k0s3FJ90nGyIYp3P/v6c6TqdaSn\nxtWPi7RJrnuX3Oo6OTvBkw3TCbdUnzROfyfns5PeN54jJa8IFefEa1cvMKJI2Q0SB3n6e2Lh\nluqTxguy2ans+ElStHqsixTvjdaL4r12zguyBUYUKb3BKn2Wtb3iC7JTCrcUwyiEIjGMQigS\nwyiEIjGMQigSwyiEIjGMQigSwyiEIjGMQigSwyiEIjGMQigSwyiEIjGMQv4/3Qa8/f10HXIA\nAAAASUVORK5CYII=",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df <- data.latest %>% filter(country %in% setdiff(top.countries, 'World'))\n",
"\n",
"plot1 <- df %>% ggplot(aes(x=confirmed, y=deaths, col=death.rate, size=remaining.confirmed)) + ggtitle('Number of confirmed cases and deaths in top 20 countries.') +\n",
"scale_size(name='Remaining Confirmed', trans='log2', breaks=c(1e3, 2e3, 5e3, 1e4, 2e4, 4e4)) +\n",
"geom_text(aes(label=country), size=2.5, check_overlap=T, vjust=-1.6) +\n",
"geom_point() +\n",
"xlab('Total Confirmed') + ylab('Total Deaths') +\n",
"labs(col=\"Death Rate (%)\") +\n",
"scale_color_gradient(low='#f75656', high='#132B43') +\n",
"scale_x_log10() + scale_y_log10()\n",
"plot1"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"Transformation introduced infinite values in continuous y-axis\""
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAilBMVEUAAAAAAP8AsPYAuuAA\nu04Av30Av8QAwaMA/wAaGhozMzM1ov85tgBNTU1oaGh8fHx8rgCMjIyVkP+ampqgIPCjpQCn\np6eysrK9vb2+vr7AmwDHfP/Hx8fQ0NDYkADZ2dnh4eHna/Pp6enqgzHr6+vw8PDy8vL4dm36\nYtv/AAD/Yrz/pQD//wD///+VRM5eAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2d\nDWOjNtqu8bvd1tmtks7Gkxn3nWzmTJ3O8Yn5/3/voO9Hn0hCAgzP3Q7ECEn2LS4khBBdj0Jt\nRX//N6i/G2fdNU4fhZpPCBIKVUEIEgpVQQgSClVBCBIKVUEIEgpVQQgSClVBCBIKVUF/R9Q4\nawQJtR0hSChUBf39Z1B3DtK3T13XfXptm0lQnfp178/mZ1eP3Tvfc/jC/K8f3eNIqvEUUbNr\nqyB9Jx3XU8tcwtKHOf8rdti/dBz31+Hr8r++dS8jqSJIK9NGQfo+VEZvw/rtqfvUMJuwckB6\nFdi8dJ/EX8+dvyZFkFarjYL02H0Vfz0FjsnGygHpXTTkHjvZpCOiiRdOFUFambYJ0quuh77z\nk/zL49DKe+NbnruOPPO/hxqre3p1NnPpOMO1yyNL8vszGXb6zrf1cjX8eyHdo2igPXXkiz7M\nWfuS7fKVyG8AcmUaCOo5T0+MIMGTkRn7AjxVKwfUGrRNkD7Z1ZC4YqJb3zr99zf+54u12Ykz\nNBTZXq8d3MZ/BaPkSW1+YX89uyA9s7/ezFy5XrpvPU38S/9FfK2X3s6MfQGWqp0Dag3aJkh2\n0+jLcIzSJe15eGRH7Td60v/OqojvrPUHNrtxBlJogsOV15f3/n04kn9YIJG3/v0T3XXYZUjn\nlbhNO/KqdtG5cr12tGfveaDsjSHELpGszNgXoGm5OaBWoG2CZB9kooOZbQZhL3zzO221Ocel\nGeeN7y/7Al4skF5ZMh3dhV2cvRMHJLCLzpXrvSM9pZ/u99iL84CV2ZtMy80BtQLtA6RB31+/\nPLHNn4brjm8/2LbHTsrY7MYR6fFrGXENY14jyT/lPaFP/s4GvovOVYgm/IPVfU/sr8dIZm4O\nqBVomyA92r1eX4k6dH+wPx/pab0DhzTY7MYBx7H6ww+S3OUpDFLngkQvkr6JpuQ3cYk0kpnO\nwUoLtYi2CZJxH2Y4sX8drjFevv0Qh9sru+7/YldcajMXjJMPUqD7G+4Csx4ukp5Z6+2N/fXa\nj4PUIUhrUjJI9Ytqnu7vH+SJ1lDqEoPr+zO9LCHddzMe38wF46Q37cSf7xGQnFzpdtKLax72\n1/t4Zu/IzqqUClJX/8BveSAQ1gfXsxbbqzz4Xu37mc+st4x2oxmb4V+vEKQXvr+8/n+X4eAw\n/8Qp+RoByZMrvW0sPtK/Hj2ZRXJArUCJIJmHxbDQ7Qlxm0SQllG6LQ+ENz5E6H24zqF1Exvo\nIHqMeT/3C93+nd3M+U509/eLrspgHHHQDu28F94j/Z0e8Z/eRTg4zL925Bu/U6R+JqtZwC4w\nV6kv3aNoVNK/XpzMojmgVqB0kCQr1v+98TGncJseCPJuJgfjq/z0pu68kh96L3BDlqiOOxhH\nHrTwHimP8GKB1PNbs1/0Yf7Y2buAXKXexL1ahhkYw6pvyEZyQK1AOTWS6HGyQDK2rAak/p32\nXHfP4qz/lQ62eeOXTm9sLJC4AKFDe3hPHdxsx1EHLRi10789ypE6Rl/EN2sAz/dHet1l7AJy\nldIVTCefpQiMR3JzQK1AmddIThVk/b8ekFCoOZXba+c28MCWPDYQJNR2VPc+EoKE2qmqgpSH\nBoKE2o62ObIBhZpZCBIKVUEIEgpVQQgSClVBCBIKVUEIEgpVQThlMQpVQQgSClVBf38OCkFC\noVK1SZDeUFDoZC1FnEKQti90spYiTiFI2xc6WUsRpxCk7QudrKWIUwjS9oVO1lLEKQRp+0In\nayniFIK0faGTtRRxCkHavtDJWoo4hSBtX+hkLUWcQpC2L3SyliJOpYIk3srA/55QMjDJOsl4\ntLTfKxM6WUsRpxJBEhRVPfbvCqQHKX+osV8ggTd/gD+dmlrSyahtcD/vn57EAgHzmBtxKgOk\nHtRLcN7vUt0VSFQPwU/yb17OvhJLK8UNgmStpyS1vLkRpzJB8s37XaotguTbMbRpNIdaWtLJ\nmiAFU7p/kHZZI/EGBlz6yliF6P0e+EewDez49pDUPinRkk5CkBxL3uBGuR3+CU1Zg7kRp7Kv\nkbzvoyjSnYIkGxgP1t9vRlmrkAdjb/5RL6zkNg2SaYn788Emw7UVmRtxKrvXzp33u1QbAOnN\n/NtX1mANPvp32GKNpDsb3F9qUvbg/XNV5kacwvtI6fKBJFp4cAd3r2hZP4AkNgiSWnh+6YPc\n3AykyuZGnEKQ0uUBCRbhhJPmW72y9mhJJ03PrA8Pb9CYVjWSnf8ERZxCkNLlguQtMO+hgCD5\nQfLT4wNpDeZGnEKQ0uUH6QEWmHGiTS/rB51UAy3pJKhOXDoeDAcDIClTVmBuxCkEKV3yoBDX\nzrKXFYCkAvVeImKwrPfY/f1m/vxwjWSZsri5EacQpO3rzp1sc3YpUsQpBGn7ul8na13b1FLE\nKQRp+7pjJ1PGu86oiFObnLJ4ab9XJnSyliJOIUjbFzpZSxGnEKTtC52spYhTf/8RFIK0EaGT\ntRRxCkHavtDJWoo4hSBtX+hkLUWc2iRIF68Cm8MBuduLQvIzGQt0QtHJsKo5iSDtuvjRyVgg\ngpTn2Y6LH52MBSJIeZ7tuPjRyVgggpTn2Y6LH52MBSJIeZ7tuPjRyVgggpTn2Y6LH52MBSJI\neZ7tuPjRyVhgA5CmTbzlF4JUlslY4BD60/yMThbkw0OTnUwFaUJhhIQglWUyFoggpSY1FtgM\npE5On6/m0JeLErUDaff6WSuhxsfyDkEyX48E/i+fthhrpLJMxgIv/c9w8ZNBXs9kADH2aPxj\n7tlJS3k1Ui9rJD3vd/nVE4JUlslYYKz4iVpYUgFmYOMfc8dO2soFyfm/HAcEqSyTscDLzyyQ\niBlgBjb+MXfspK1skECNJK+RsEaaELIASOwP1YAjekmc2qrxj7ljJ23hfaTNFf/PKEgcINL3\nBkIaJEXYv6iaFdFdiDqZui+CtC+QSK8rHiK4IcSqkQg6yRRz0haCtLXi/xmvkXoAkN5kAkTU\n/o1/zB07aQtB2lXxE7Eg1iYEySMEqXEJrLr4f04DiehN6OR2QFItELjuI2uuxiWw5uL/mQES\nCQSgk1QjTtpaN0hMpFdlS8QitBZqXAL3XPz+M08woPGPuWcnLa0fJKIWCNJ4YGbxj6nxj9mQ\nk+ufspj01lUwQZCCgT8RpIykYoG5Tq4eJMIW8hJJbAmtd38bURZ/rfQaH8tbAun3oNYEkliM\nrYUal8CGin9MjX/Mhpy8D5DkX2RkLdS4BNZb/D8RpJykIoHZTq4dJGL8SUbWQo1LYEPFP6bG\nP2ZDTt4HSEQsxtZCjUtgtcX/E0HKSiocmO/k/YAk/yFICFKlTMKBWwVpdEQD3ka8wNKvBtJO\nBZxMjbJ2kIrU+FjeEUiNf8xKnfxZ4CSCtOviRyd9GxEkocYlsKHiRyc9234iSEKNS2D9xf+X\nuTc6mZPaTwRJqnEJrLL4EaS7AAmnLE5JaC3F/xeClJSUN/AngrRnmRz9VSvZxsfyLkGyJ/6e\nLKyRyjLxBpocYY2UlJQv8Gd7kMAfVRhAkMoy8QVaHCFISUn5AucBCU6zOlkIUlkmnkCbIwQp\nKSlPoM1RG5A6rJGiCa2g+P9CkNKT8gTaHCU7mQcS1kjRhFZQ/AkgEa9n+FoXJpuj2iC1EIJU\nlokb6HAUK35r9iC5VS7M0MY/ZsVOSjvNvcNCkDZV/OMgEbtGInpJegTJ4ghBalgCayt+l6Nw\n8RMwnYza0ltPdu3WyYvDEYLUsATWVvwuR6Mgkb43ENIg7fq1Li5Hybe2Vw5S6lTFe36wz1Mh\n/dfcG/jZmyDha12MTy5HW6mRCFgRfNTcG+jhKASS8glf6+IL9FRICFLDElhX8fs4CoJkVEDQ\nYsPBnTrpq5A2AhKBa4IgeQK9HAWbdtInYn5EJ6l8HKWDtOopi1OnKpbrHV4iezn6bywG6R1e\nTCfB9sbH8mpBSui2sbRykMQidS3UuATWVPx+jkZrJHytixvo5SgdpF+CWgFITARBCgY6Bf/f\ncZBy1PjHrMhJb+9npP/TFoJ018WPIE3JxAj0YRTu/3S0bpCIWKSuhRqXwHqKP8QRgpSU1MU9\nJVn10ZZAkv8QJDfQf4GEICUmdfGBZHK0EZCSRzTs8xI5yBGClJTUxTklORxtBaQyNS6B1RR/\nkKM/zb3RydHUQhwhSA1LYC3FH+YIQUpK6mKdkqZ02yBI91v8YY4QpKSkLg5IToWEIDUsgZUU\nf4SjaiDtROEKKTpGBApBuleQYhxhjZSUlAoMc4Q1UsMSWEXxmyVvYoQgpSUlAyMc1Qap68GB\nb00j1Oll56EjyAuCVJYJCwxwhCDlJHUBdXuAo6Ygef+29/DumhaAGlecoz9rZdP4WF4VSF6O\nkk9JeSDxab87OQc4C+ngXMZ6J7mvWPI/jWnDsUYqy4QGjnCENVJSUhfQSPZdbub0f2aCFPi/\nV626yE723JIIUlkmF6ujwcPRZzMpdDKSWpyjOUAyp13tujHaEKQ6mSRwhCAlJXXxgGRxNE+N\n1Jt/JFGEIE3NJMDRn4AjBCkpqYtsJFfotknt/pZXR6o6Mi+CYK+dvFpyrpEQpCqZjHD0+TOC\nlJjUJXKBlHu12ew+UjdKCoJUlEmco8+fEaTkpBI4Wh6kfvS9fghSSSbegv/T4igMkjNXgx2w\nr7dRjHK0ApBGhSAVZJLGURAkohaWVIAZ2PbHLA7SOEcIUsMSWLD4EznKAYmYAWZg0x+zOEgJ\nHCU3klcOkt3g2PkTsqkcxYufGIYRvSRObdXyx8QSmu9q0+UIYvT5DzOpsNYNEpELYn4OrYUa\nl8Bixe8dyOLBaBwkYBhYEniJtPmpNuPDfpmlf/zxR2pqCNL9gBTjyMAofh5VfpJ+z2+j8I+v\nAxj9+QeVmVRY6waJieiSJfCzZy3UtgQWKv4MjOLFT33Ct1GMcvTHH3kgrXrKYiYCLpHk58B6\nww2SZI5Y8UcSImoBPu8OpFSONgQS6XFeO6s+GsMoVvykN73ydTZs2kmmMY6kj1sDSf5BRtZC\nDUsgmlC74k/E6PNo8ROwIvZ24vSAN/kxCQnNcLWZxtHvZlJh/f3PoNYBEoF/kZG1ULsSiCfU\nrPjd3iUvRuPnUXVttOu3UYxxpDH6fTMgEb0kuwUpsToqOI+OqcGPSUposW4bC6PNgET0Sv7b\nHUipGH0uOI+OqfqPSUyoJUgjd+MMjLYCktMS2eHIhgKMEKTI9uhohs9/WBxtBKRCtSmB8YQa\nFH/ixVHpeXRHTgp5ZzlxOBI2/vLLL2ZSYSFI6y1+cO6MU1R+Ht2Jk1rRy6PPDkYIUvUSSEmo\nbvFbDZAQRG51hCAFt0cx+uxihCDVLoGkhGoWv1ngEYrc6mg4CMws9u0k2B59tNhTHSFItUsg\nLaFaxf+XQVEMIj9G6cW/dSfN7XZLeaRVR/VPM6mwEKS1FX96VfTZPovmN0h2pQhG0Egwbnug\nIDVxBGllIFlVUYigOEe/mFns00lre7CrzmrVAYgG/WYmFVYqSPZkww4FLhbLTX5yn8ohKIpR\nxnl0THWP5fSEqvd/BrsYJEaOhQyj32qDJOalMzf00Q0LglSvBPISKix+s4gTCPJiZBwBZha7\ncTKw3d//KU5XTmWkIfqtDUh6isdOTIivptKX8xXreSPNKsyrnYMkijat8hnBqPg8ugknRwLs\nDm+nMoIYmRT9+uuvZhZhZTXtOvWfd8Z875aw9ggSLc4SbhIqo6Lz6P06mRbwl03Rf+2q6A+n\nQtcQ/doApB5i1Om2njGVPvgbQaKazswoROwQ0OfRzOK/GydLMo9AFKzRtYVU//jHP8wswsq6\nRjJBkpVSPzpdvl/3DlIDSrIp+sVHUUbxL+Vkwm/NzSPW/zleFf3iWChkZhFWXq8dmAtfXyN1\ncJs1h35M9wlSa1aCilVFxcW/kJN5v5zSkJ55rB5ybDSqot8MC/+HK9VJvI9U9zzaSLGqyKAo\ns/iXcXKSFX+NSxMUc9GtzQ0L/82V6iSClFL8k0p+kiL3iszi/0dR8c/k5HL+BVy0anOfhVT/\n+c9/Up3cCEhNHuxbWdnr4tcE/Y9d9v/hChZ/0tsoKjm5qH9cXhe9BDkW/i9X0ElL2wCJqAXT\nXRe/U+6AIPPkaRZ8UvFbRrkBtZxc2kXXRqcO8p6B/lfp/3AhSNnFv2SZu+yEyv0/jpyyjxS/\nZZT+JAMmO7kiC81aJ8FC7d//VUKQEop/mUI32xhD+TrVSkxmmf9fQ/9PaRSk6Nso7sFJcbJJ\n9s210bTw/wW0V5A2O2VxHRGxIOpDECR0MktbA4kp9Tw6ErD0mOWwooFOqMcotd7v2ygSAmNO\n2lr/lMUpImrBlOnZjopfGhV8GwU6GQuNHILrAUmOhAh0z0ZF1IIp07MdFb80ilibEKSk0Mgh\n+PdvQc0JEumA8pMiasGU6dmOil8aRaxNCFJSaOQQXAlIXwFHX/OTImqBioqIBVEfxgJQaVoJ\nSL1u2hUpeMMeZco/gCEWgErSekBCoe5YKwLphRRfI6FQC2s9IL1M6GxAoRbWekAiJb0MKNQ6\ntB6QsCZC3bHWA9Kn7r1xhihUM60HpB/k6UfjHFGoVloPSFNGNqBQCysRJOsAr3KstwPpDQWF\nTtZSxKnkGik+83eJ2tU8S/u9MqGTtRRxKg8kNX+dWHtm108XgjST0MlaijhVBBKcbLUrBgKb\ndjMJnayliFOFIHVgYlUEaeVCJ2sp4tS0GqmvCBLXj6cvhckBLe33yoRO1lLEqczOBl0JqTch\nFVcg/ojv3XSSlvZ7ZUInayni1PT7SJVBqjFUaGm/VyZ0spYiTk0Gqfyw98f81pHiFKWW9ntl\nQidrKeLUCkc2vExOeWm/VyZ0spYiTq0OJDKdIyx+U+hkLUWcWg9IFTWHpw9Ck9Ko9WXiWrmT\nUCOmzmRYUBGnEKRCPVjrKWk01sqdhHowVk4QguSTDdL7y2PXPb5UeCppDk8RpBaKuIogheQ8\njyQukqY/lTSHp7DIZWvEXD/IcLH54e3hwdgHQXIUdvWBG2Y5PbMiTq1nyuLnjj7Y9+Ope56c\n8hyegiJ/8K8lSGqzOqc+yCNlji96ryD5XJUWPsB9Z1TEqfWAJG/E3skNWdDZYBS59dlzRMx+\nKKzcSSgPSPCz7fTcijj1969BIUgxgXKWRIVAgsHmhzm+6N2C9GC17d6Aa4s07O4EpLts2tmn\nTXPjg3GF7O6LINmyayS5zQZpIZQiTq0HpLvsbECQ6soDklW/u3bPqIhT6wHpPru/nZa7fTEU\nuUbCzgZHAVftpt0aOxvWA1I9zeEpPC/6u7/VTrBPAru/o4IjGyynlGHQ8ZkVcQpB2r7QyVqK\nOLUakL4Sunx7/l4h5aX9XpnQyVqKOLUWkJ66jiFEKjxFgcVvCp2spYhTKwHpW0de2R9vpPs2\nOeWl/V6Z0Mlaiji1EpCeulfx12v3NDnlpf1emdDJWoo4tRKQwHCGOxnZcEdCJ2sp4lQiSMZ0\nc53zR5FCIJFJqVIt7ffKhE7WUsSpVJD6avwYaUo9dXI8w487GSJ0R0InayniVCZInf4DTFrc\nF82QCvf/qvB5VldL5Vra75UJnayliFMZTTuDnMD/OTJ2J90n+jXfPnWPean4dPEqsDkckLu9\nKCQ/k7FAJxSdDKuak3k10ihOOTJ2l0NWrTGrZFDOGovfE5pXLIYys9+xk5kgyQ/VQer7b58G\njD6ZN5GIWKSuhTI921XxE3HOwVPSeGALkMQlUKfeiWT/MRkkn4hYpK6FMj3bVfGTNGfRSV9o\n5FBNBMlWPjbeNJJEEKSsQAQpNamxwBlAqnHbtAlI/6Ka/NW2KwLXBEFaHKQKSgSJ9FgjZQVG\ni19dIo06iaekLCFIOwMJnUwP3FSNROBibC2U6dn2iv+n+dnjKTqZELglkIheEiz+pEAEKTWp\nscBxJ7VWDhIBK4LFnxQYLX50MiNwOyCR1NuHeBsRhv6MgyT/IUg1QVrNlMUV1bgEVl/8EZDw\nlJQRiCC1LYG1F//Pn3+Ze6OTBfmw0NgpyRSCtL3iR5ASkxoLzALpH0EhSNnmr6L4B44QpKSk\nxgIRpLYlsO7i/1kTpL3r58/UPTcJ0q5FOfqrVmKNzwrrPiWxk5K5d1ibBKlxCay6+FmFhE27\npKTGAhGktiWw5uLnHCFISUmNBf5EkJqWwJqLn3OEICUlNRb4M6P/E0HaVvEjSBlJjQT+RJDa\nlsCKi19w9F9zb0uELXBkw1gggtS4BFZc/JyjOEiJD/bt3EnBEYLUsATWW/yyQoqBRHDQalog\ngrTf4pcVUgQkgqO/0wJ/NgHJnvvbgsBlIoGSjCdkcTa2pEBVIdUAae9zNnCOkm9tp4LULQSS\n4IP0ekXwPBoC6a9RkEifCtKunbzIll31GklNB8mnhFTzRfKFnikSziM5MmVX2hOypAdFaxe3\nvRZqXAKrLX7FURAkZRQ6ORL4M/PWdnLTrhufPt/cMspJ7uQnPRZ/PFA17CIgyWeO0cmRwGYg\nycrIfpuLAsmdX3+ElByQcDa2BGmO/hvdj/QI0mjgz8xb25kgqQ8Jc+qPoYLTcZVlEgr8qTka\nvyGLTsYDf7YDCV4I+Wohu3YaffNYTq9doLjttVDjElhp8f+VAxL2f8YDJUfbuY9E4F9kZC3U\nuATWWfywQoqDlKHGP2adTlJJjjYGklyMrYUal8A6ix9WSH+ae5er8Y9Zp5MXUCFtECTSI0iR\nQMgRgpSWVDhwqyDhbGxjgSZH1UDaqTRHtUc2tBCOtSvLxBf4l9GwqwdS4x+zQieZAEjm3mEh\nSFsofpsjBCkpqVAg4AhBalgC6yt+CNKfCFJqUqFABEmocQmsrvgdjhCkpKQCgZCjdJBwyuK7\nL36XIwQpKSl/4E8ESapxCays+D0cRUDC/s+xQIOjdJD+J6j7BWlX8nH0Z3BvIhZja6HGx/Ia\nQTI52jdIjUtgVcVv99eN1EhELMbWO3RSCEHSalwCayp+p+Ob6bO5ty2CIAUDLY4QpIYlsKLi\nD3BUA6SdPtllcZQ+sgFBunuQXI5iIKU+IrkzJ4XsCglrpIYlsJ7i93H0+XMcpB6bdpFAm6Pk\nB1IQpDsufg9Hnz8jSMlJeQIRJKjGJbCW4g9zFAaJiMXYel9OKjkcbQckwpd4G9EJdO8fff6M\nIOUk5QZaHG0IJMGJWIythRqXwDqKX3H0558OR5GmHZ6SIoFuhbQVkAhghCBIOvAvh6PPn5NA\nylPjH7MGJ6HcCqk6SJE5gUqvdXDOhrJMLgokb6sOQUpOyg70VEi1QTIm0be0KpB2chtRlrMf\no8+fa+XT+FheG0guRy1AYmt7gm9jmSeskcoyufDrI1UdORRVrJF2JV+FFJ+zFigTpMAcq31J\nvYQglWXCOFKddT6MsGmXlpQZ6OWobY3kTLOKNVJxSG4moJSDGCFIaUldYiBlTrWZd400+kKK\nHCFIBZnIUg5XRghSclJGoL9CatRr1zmTfaurJgSpLCQvE8BRBCMEKS0pGBjgaCv3kXBkgyF9\ncRTFCEFKSwoGem4hbQukEjUugaWKP6VNNwoSnpK8gSGOEKSGJbBM8Ys23ThEUZCIWIytt+yk\nLzDQsEOQWpbAAsWvro3SOEKQkpLSgUGOEKSGJTBz8YPCTcQIn0dKS0oF+nu+EaTGJTBn8eui\nTYaoEkg7GWzFFOao9siGFkKQRjIpISgFJNJjjWQERjhKnrN2kyBtQaJMSyj6PDJolfQIEgwM\nXyDlgIRTFq+x+IurooQaicBFaL0ZJ8dBinKUfEcOQVph8U+oisZBInpJEKQ+ylEOSP8OCkHK\nLpkaxT8U5jSI4iARsCIIknzWOMQRgtSwBBoWfxWKYiARIoYu4MgGHhht2CFITUugUfFXIWgM\npF04mZrUZeQCaWTOWkMI0jqKvyZFCFJiUgkcIUgNS6B28VeGCEFKTSqBIwSpYQlULf4GFFUE\naduKd3wz/ZGa1p2AtM1L5DYQ1QQp82feV42UUB99/sNMKqx7AQmsyDY6bdtRhCAlbU/iCEFq\nWALTi78pRAhS0vYUjjYHEoFrcucgVbpVhCBNyiSRo62BJC+R+v7eB//PgRHOtDq6PcKRfpT/\njxYgWYd96ayQ4RRjImIxthZqWQKxhMZD5oCIyszbY+bGum1yM4lxpEz8owVInXXcV+i7zk2C\n3DtIc1EUB4los+7WyamZhDkyq6NmIOkZ7bphQ1c8yapIMk/kvot/RoxinbYEH6MITWHnVkf1\nQYIzrXY9+CADC7Srpt2sGMWLn8DF/Tk5OfOU6khxVB0kc45VCNIcNRIB/+6w+OekaPwSmcBF\n2MnVd9sUKsgRnC9QcfR7arIFNVIvqqUJ036rNFN1z9MazovR+CUygYvQepVO1sg8BSPA0e9m\nUmGlgaTf4sKujXitZEwBXqB9jLVbAiMEKbQ94eLI5KgySE20A5BmpijtEpnARWi9NierZJ5y\ncWRihCDVLYHEhKyQxTD6I1r8BC5C63U5WSfzpFbdZwMjBKlqCaQmZIQsRtFYg4TARWi9Jifr\nZB7CKODi7wjSGop/bopyzqOEL++w26Y487/+CmA0YuPvv/9iJhUWgtSi+JfCKPs8unonq2Tu\nxyhs4++ao1/MpMLaJEgLam6EPlttOqFaP6fasZyZUE2Q0ijyuThw9IuZRVibBKlSCWQX/wIU\nuZUR1khAiVWRrzJiGCFIU0ugYPvcCIHy/91WavFvWskUec9Gv3ClZoZTFtcAaWZ8zOJ3KNp9\njeQQlOSjpzrKqZEQpInFPw80gcL3QZTT17QqJyeGOL1zE5wUFP3zn/80swgLQZpU/G1pSS53\nUxnFvx4nJ4RkcTPupobon7/99puZd1h//ycoBCm+vTYiaSUfI4hDlFP863AyPaSqlZGqaOBo\ncPG3X3/91fxWYSFI+cVcszTzNIbQP//5K1dq8S/s5DL9n8FKXVH0C4cox8mNgDTf/fimRRzU\nOEECIfqqxX//+9+pxb+kk5dF6vZQs1g36ARB/+BKdXIbIAd5sMMAACAASURBVBG1YGpV/HMW\n+Oc4PQAijY8uu9Ti34mTVLELS3FJZBCUCdKCuheQZi7wEXTEmTN8/lspSDO7mGAo6FRw8Bn0\nb35mKnZyPq0XpKWLGGgEmHWCNJd/Xo10aQp8THSGCl17979c/4drryBtdaaBuUTUAp28F623\nRircXnnMckTRQCcUnQyrnZPzCUEqy2QsEEFKTWosEEHK8wyLH51MC51+pLYQglSWyVgggpSa\n1Fjg7kHKVO4ldckleHacCdf5U7oIiFrMkfOWnZxP7UY2ZAqLHwidrBN1Rq3mUXMs/lpCJ5cQ\nglQ7k+lRJwqdXEIIUu1MpkedKHRyCa0GJBTqnoUgoVAVhCChUBWEIKFQFYQgoVAVhCChtqNN\nTsfVWmQjeSwvspE8EKS+wOiSMTS5USaM0ymPOVXZOW/ISQQp2+miksmMNKH0J8Wdpj07iSD1\nmaM0y0omL5NJLEwZdTpNe3YSQRoq8OyiIdljpPMyKcujKKua2rOTCBK3OicC373gmGmbR2FW\n9bRrJxEkwhYkI4LYOSNKdiYleRRmVU/ZOW/JyV2DBGr8NL8I3DcpRn4mJXkUZlVP6OSeQSLQ\nsLSiISIeWNXOpCCP0qyqKT/nzTm5Y5CEz0R+TIpC1M6JZ97sTPLzKM6qltDJfYMkViQnivQ4\ntR8oP5P8PIqzqqWCnDfn5J5BImKdFSPzOM3OpCCP0qyqCZ1MBqmT/7p6h//SIKnLUJIcIW/3\nokxK8ijMqp7QyUyQJE9VtDhIRdeh+eVfkklh+ZdkVUVlOW/JyYGXzq8QSNW0ApAIX5VFa5pJ\nUfkX/p4KQif33LQT/Tr5TudFKMskd/8JWdXQ7p3MBKnfVNOu5z06DRPPy2TCV8nNqr527uSu\nr5FaizTev07UexBpvP/0qIkgyTbd/TftCFtknG2yI6iI2b1S2VlUiFouInJOzjo7gop4B06m\ngtRAC4FEMu8wZEcwYrbcv07USXmik1K7A4k6RcS6UQQYs+n+daJOyZNk5b1lJ/cHkqq9SbMI\nKk5GsydzfzMqWYoknmly1ht2cocg5d8kyC9+eu4lfXqh5O4Po/alDabpQieV9giScIq0i8CL\ng/SphZK7vxFXJ5AbdbrQSandgcSq7xy3MiMQuSBpEXL3t6MXNJYqCZ2E2htIohwJSS/9rAjq\nbEh6XTYV9/d+v34JkNBJQ/sBibAF6XVbuHYEHouY8WrvryOqBOCnOURUtqRHJ4V2A5J2iaSW\nS2YEEU1f6yZFyt1fxVNn9tJWfanQSZ/2ApK2iv5BGkRQEeUFb2KR5O6v4+lz8PwcoZOWdgKS\n8ie1+s6OoGPKM1tinNz9VTzSy5JfgCN00tI+QJInReHyuF3ZEXQcWZ7V93fi9+L0S2YkCZ0M\naBcg6cJMrPmzI8D9SJ9Unrn7exKQ59L56iR0MqRdgCRsahmhF8Uh4yXEzd3fk0BJrGlCJwPa\nB0jM6rYRet1AT42Yu78v/uxCJ/3aCUj5VhU2EeRVa5P9fdFnFzrp1V5AmrH8M2Lm7m9HL4w3\nTeikT7sBac7yb5tHrdjzZbsHJ/cD0ibLf0rkCdnm5rsDJ3cE0hbLfyGhk472BBIK1UyJIMFZ\nVmsBgCChtiMECYWqoIGXg18WSGxGO76oNE8kgoTajnJrpE78X4ECBAm1HeWBJGokBAmFMpUF\nUoc1EgrlVQZI7Dqp4kz6CBJqO0oEyRaChEJBlYFUhQEECbUdFdZINYQgobYjBAmFqiAECYWq\nIAQJhaogBAmFqiAECYWqIAQJhaogBAmFqiAECYWqIAQJhaogBAmFqiAECYWqIAQJhaogBAmF\nqiAECYWqIAQJhaogBAmFqiAECYWqIAQJhaogBAmFqqBUkNhEXIYmc4AgobajRJBqzWUHhSCh\ntqOBl6tfDki9qpfUzMVONZUjBAm1HeU17Zy59KfQgCChtqOMzgZNjp5LH0FCoajyrpG8/5cK\nQUJtR5lNO7lEkFAoqIymXV/52EeQUNsRgoRCVVAeSFWFIKG2IwQJhaogBAmFqiAECYWqIAQJ\nhaogBAmFqiAECYWqIAQJhaqgzYH07VPXdZ9em6Q9Lv1cyfuz+XlqeuG0svJ4fSZd9/jynpin\nR29PXfck/P06/P341dqBdGT8e8CYoRTh9tVrYyB9Jx3XU4PEE6QPQvnkVq306oD0SdjTRY7P\neHpvPP4X+veTz+vXeOpcMGYoRbh9/doWSN+HyuitZ+eyT/VTT9DKQfraEXqM//jadd+T8nT1\n2H0bqn22z0v39GPwmpjH+qfuZdR8I2YoRbD9DrQtkB472c54Gj8rttDKQSLdD/7H1+45KU9H\nb5yaF3qQE77jd6Mp9949DsUQazr2ZsxQinD7HWhTIL3qU+H37oWuXh6HdsIb3/LcdeSZ/w1a\n33Azl47Tde+PLMnvw5UFef7Ot/VyNfx7Id0jT+f1qSNf9EHYiWdNuv4rkd/AbPO/8WP5rWOB\nz3RlZMOy5ulZaVsytoMkeLyvMNzmfNihe353frX7ZbU5vCr7DkE0vsCX4Vz2VdRR4te/Gl7a\nXz2Uom/7irUpkD7Z1RDRFwRv4OLgG//zxdrsxBkaimyv1w5u41+eUfKkNr+wv55dkJ7ZX29m\nriKjnkVkG+g52MyGZS0aPGbaluB2mMRwTLP8QPiTzr1XCRPnV3u+rE6BrWi9o78A+HtI6H0I\nJeKbfVGpSC/Nr/4YTtG3fcXaFEjEalJ8YWfGL+zalbW4h+PjkZ7k6Kn3O2v9gc1unIEUmuBw\n5fVlODqGw+6HBRJ5698/0V2HXYZ0XonbtBsuSuQuOleR02sv+7heh1ytbFjWNBU3bVNgu5GE\nJ94PWl19+672pl+OwWX+as+XtTMDib7CayTeKHjuRC1E+Df4rn6QIRYzlKJn+5q1KZBsz0Vb\nXTzWqza/8M3vtMydYjLjvPH9+Zn0ma4NkF5ZMqwdwi7O3okDEthF58r0gzZafnSP9KB/HhZW\nNqqZ5aYd/NVGEiKecbn+g3fb8dsDz2wHdsq3nXK+rJ0ZSPSRgHDeKBBt7E5ckhH9gwyxmKEU\nEaRUtQdp0PfXL09s8yd6Lubl+ij7gDtjsxtHpPcojocf9JAzr5Hkn/Ly+pO/s4HvonPloo2X\nL903dvp9Cmfjph381UYSjxIGI947+3GikoZ1hPGr3S9rZaYDPnXAPtmo420D2TH+6dFbNjxm\nKEUEKVX1DXJ6i74SdTT8YH+ye30dOErAZjcOOJrVH36Q5C5PYZA659j8Npy9Hzt6QfBKG2Ej\n2ei0rSPc9yeM5zkS355g48nzq50vKz84ib4Yrb8vKh5t7skG82Pn+xYvsv3nTxFBSlV9g55h\nof6gnbzd08u3H6IoXp9FAZtFozZzwTj5ILnXSM4uQN0zbTt96t6f6RlgDCTnoO6t7aMg6b9Y\nzQEi2r/aUxPJGlx8FpWNyZHssxBdGBKkJ1+KMmYoRXv7ypUMUv0TQ32QQPf3D8IaS6A/l+r7\nMy1gYt+N5Ju5YJz0pp34890+aMEuTq7sKoZ1FvO7OiPZvIdKIL1pB/oO+Dd61xHNX+35svIr\nswDRKf3+RIwrH10A7FpJfvI07XTMUIob7f7u6h/4DapsIu/eDS22V1l4r7AM6d/PvGy+g3Od\nDcArBOlFlKXoBXiX4eBg/8RL/WsEJE+ub93TEO979yh60I1sImmbAtuNJERnA4inOye/0W/x\nLHpCiPurPV9WfmVWd/Mexx+EmJeXn1SPwhvvyeEokxcbJBAzlKKxff0aeDn65Zv7W5+zdPNC\nNJ0FaRl0NADpjQ8Reh9a/PRkyAY6iP5f3s/NRq98Zzc0vhPd/Q0GtcA4ovCHFs8L71T+Ts/q\nn95FODjYv7KO3m8dBAlcMdMVzFVnxrMhTjbRtE2B7UYSvPvbiPc0JDUc2z9eWG/ia0e+i+5v\n+1f7vqz8yixR+o3fCTHD4D0fWh+yzn+a7LsFkhEzlCLYfgdKrJEAK9b/vfExB44GIKkbkhyM\nr/LTm7rzyk54Yi9wQ1afWWEcWfjwNieP8GKBJEZbftGHy2Nn7wJyleI3bj6JbYH7vm7apmC/\ngOeGLATpxxPsCxA3ZJ98v9rzZbm+8wB6+nnurAxg7UHvBbGbsOYP4jJihlIE2+9A6SBJmmyQ\njC1Lg9S/s87dZzkon96AfOMt9zc2FkhcQ9ChPbynDm6246jChwNv3h7leB2jL+KbNYzn+yO4\nnucrkKv8tuyA/io7kP0jkdy0TRmHsz1EaKihjXivnwh9jELs8HX4ki/+X+1+WSE9dqgzch5k\n1FDDhyFgYNX4QdZX7mIpbvIxCqPl5q2a1gESypZ7U3U21e+gWq9SQdKnSBsesCWPjR25vIh4\nq2g4rfvqlZm+wVI5z69kkJKEIK1I8hJpufswCFIhSHm+7cjlZfRKL/WfFrxYR5BKa6Qs7chl\n1OaFIKFQFYQgoVAVhCChUBWEIKFQFYQgoVAVhCChUBWEIKFQFYQgoVAVtCWQ3lCO0M6airiF\nIG1baGdNRdxCkLYttLOmIm4hSNsW2llTEbcQpG0L7aypiFsI0raFdtZUxC0EadtCO2sq4haC\ntG2hnTUVcQtB2rbQzpqKuIUgbVtoZ01F3EoFiU81pmbjqiEEaQahnTUVcSsRJEFR1WP/TkB6\nkPKHGvsFEnjzB/jTqatl7YxaB/fz/ulJLBAwl8ERtwZePvzyzf2t6qUOzPtdqjsBieoh+En+\nzcvYV1ppJbhRkKz1lKTWYHDErYwaqQ/M+12qbYHk2zG0aTSHelrWzpogBVPaAkg7q5F44wIu\nfeWrQvR+D/wj2AZ2fHtIapuUaVk7IUiOLW9wo9wO/4TGrMPgiFvZ10ju/6W6O5Bk4+LB+vvN\nKGcV8mDszT/qhZXc5kEybXEtAJsM51ZlcMStRJDA1ZEz73ep7hqkN/NvXzmDNfjo32GrNZLu\nbHB/rUnZg/fPlRkccSsVpAa6c5BECw/u4O4VLecHkMRGQVILz699kJubgVTd4IhbCFKKPCDB\n4ptwwnyrWc4eLWun6Zv14eENmtOqRrLzn6SIWwhSilyQvIXlPQwQpDBIfnp8IK3D4IhbCFKK\n/CA9wMIyTrLp5fygk2qiZe0E1YlLx4PhYgAkZcwqDI64hSClSB4Q4rpZ9rACkFSg3ktEDJbz\nXru/30wLwjWSZcwKDI64hSBtW3dvZ6szTJEibiFI29Y921nv2qaWIm4hSNvWXduZMt51VkXc\nQpC2LbSzpiJuIUjbFtpZUxG3EKRtC+2sqYhbCNK2hXbWVMQtBGnbQjtrKuIWgrRtoZ01FXFr\nSyBd/Aptzw8IRogF1cu+JHQ+O2v+zjt0E0HKCECQIvkjSAhSagCCFMkfQUKQUgMQpEj+CBKC\nlBqAIEXyR5AQpNSAuwCpMz/PZuc2QUp2E0HKCFg9SHQ2Gmvv2ezcHkhZbiJIGQGrBokXOzbt\n0tOKhua6mQjStIm3/EpJkAQ2D5JrvUtz71cMkjx3Ros+y80dg6SqogYgRZIoVUKasFzhZrkw\ng5t7v1qQdBMkVvR5bu4WJNCeywPp5JcHpE5On6/m0JeLEo3HI845lOgl6REkJqMlHyn6TDd3\nCpJxWdSkadeDefPB/+XTFqc37XSTg+glmVrymwDJvh7uL1fzc7GbewTJddPaO6yspp2aNx/M\n+11+9ZQMkl7YRa+PiX8NKvsadyxt/YHrOiiyPzEXcTf3aOeEyLkgOf+XZ54NEiGirNUGFcrU\n/CS2rhqJnT0BQYNSOhtS3dxbjWR3dfPQg/k5rGyQQI0kr5Ga10j6XAmWBO7C1Nz7EZACb2yb\nW+Giz3JzVyCBNt3BUKShbCoRpBbKq5HA56VAyjqC62cvJEpYFDyrhpiOg5JrpAQ39wOSoEgY\nKwJUHW/sHdZdg2SFtvSegbJ4044WdK9KXhT0kcsft9zN1iDFTkJzgtQdQgQBW+XeYd0NSMSz\nlfRTSj4jQBT0giDpsu4VRXRlFjW7b2GmVexmQ5AEOr29aeb63QRIEnRUatFr10Il3d9yM7gX\nr7dWs9gKUIW6GEi6tPk1sT5j6n0oQzcqM61iN5uBlGCnecVZlMtYACeo0y1k19EtgZSlShaL\nAE9BLgSSiVF/kWUOdhEQZRV9ZTuTT0vjMawQWAxVQJL1EHMzULlfxLgEM62wECRvgL9psQBI\nsO0hayN44pTVkKyIVglSoMmW6Vn8MjXjtCQMZW7q05J5NcQJwhqpyGKqsgZ6I5AgRIM6dvI0\nIDo5TbnL2fw8m53ZbpZ4Fk4w+7TEG3XmaUlIVUQIUrbFVKPthzlBOlgU0ZJnFIloRj2kdD6b\nHC0I0oTW2GiIB6bM0xKtjozuTiazOTfYe04+LSFIQinXQrOB5EA0qKMY8WiUoJMbb8BoLU27\npCvLcpBEFpCnvNNSJ6+IQDSDoBujyDorIUgJhZISYxaQ3KrownuVhpIXJWxfAzPxYl8DSJM7\n2nJCJE85pyVQD4loZj1EV8xObNollYoMSG4mzAASLXM7YIBINuQ8PUlM6uS5PEgFja4KIaEr\nMc9p6XgE4xV6GyJK0VnaiSAllYpsbyfHaA6SuOUKthiXQqzAnWhn3QTpuqVBynCzKki6bxBs\nO3hOSxAj87QEqyKVaO1Bqy20CpCyeoAagyTPnSxAEHSlRc83iyI3o4liZ11Qy8/ZUN6fNjlE\nBSiYhJ1GjAEjNTpVnpZu+mR1ti6L7Nos4ta+QQq0BxYBSRYarINY3ywteXDmBNGGYlcEiTTs\ncZbz2ZntZiOQqAK3cIdTEnNK1ER2x6eGSLjqPFkRcWvXIOXe4GgFkh7yZYxO4N103cW8KlLR\nhnKHJc1HiS1YI2XfLmoH0oU3yawRfcxM6aYgSIcyjPR5iSZwjD5vbGrHIAVvFM4MEqyKdACt\nWmibzulbYKHm2ZISdJWhyYNa6tqZ72YrkIyRqPqqSXbYmPWQcpNhJDw9HumDSMNZbDuPUTTT\n4O+S2SvR5yKohqKFm9kT48e+P52cGNS2oU0nPh35vqxPnK1uToQZtBY3e2qos0mgE3ST+gk2\nHYWnedoSSOknMX6Wyj5VVq+R+JnTHqHQi+FfQ23U8RC5BzsehkYI/Hy9nA48Oj37LtG0K3Sz\nRY1k9g7Iyud6pdYMbtqRWC8n6GCgTemrvB713GiIuLVLkD6SCiV9ezQonAstdY4EBIO2J+Rd\nV2cI0AVeEsvyhmELgFTqZm2QDjdtqLEeWmkUCrN7XE6oCbrp6E66MUd78PA+Usz78edh2oNE\ni/lw8Q2XG0qyF3RYnUb0ky7coyh0fgpmP4keExn9THXsLHezEkjCwgM0UrtKLzVv1E0TMGmt\nxOho1D38N31kubk3kCYNAqsAkizPg2fE6eXCr277ow+jThQ7S09eCPOmDLj9Yd/Gb2vntCF1\nk0HSBrIn8MVGYCwf2+24SSsmPphOuMnOW7IuKnMzEaSFpizO07j3EweBTQMJgGP0cmvJB8xO\n3smhRPEeQdv9cDFu5Hu+R0s7Gz27mhgCeNEDGIyzE8Po0ttu8r8HWtiFkxwAPOw8pAJux3I3\na8/ZsA2QUqfYaAESKHbYyw0lMKJFb2Ak2nQXHtxfVK/s4eMDnjuP4p+Rezs7p7pZDpJZlctx\nVXYdTweF8LsHBkbQzdOplz3kooYSabMkj9ZdpDGQbn7ZINkTf0/WbkAyivdg3sKAuqp77jZH\nrNzZXSXZp8f0Ieni/66eRBvauRRIVpP4oDrnTPEuBhrDro6Umzw96ufA0uHj/EE33w70xu3x\ndh1SrN/ZoGb4BpMVT9XsIE0ellwE0s3iKBjlqkbTORxdeM/s6aTmUuW/Zdh2EASpG7LW92pm\n5/RB3mUg2dVRsH73uck4uvB7CzwUnJaODKdCN/NAgtOsTtY+QLrBEKNryQFJXPk4l0ey+Xa6\nymhDW+RMT6ndxW59bBok58JyaNWF6vcRNylleornoWrn44cGO2MdKBG3skDq7rpGcsawzNzZ\ncLDvu5r7iZIXM9vwv9nSfnj8OPyS4xmeOCPfo5md093MBulmhbDbRqEojpuyw1uG8qpocHOo\nis7MSjU/sbrj1AykO66RajwokwmS0eY4OI14K8qJtdo7HTAcBLQn9swbdWKvIw+9HpyuWf/3\naGRnlceOMkGyBpkeDkYf3Yib/O6BcPNquPkRctOdZyXiViJILTQrSFUelMkCyZgg63Bwbxrp\nKKyHgTXVOhjAuxI0Rvz6+KxvwyZ8jzZ21nnsqLjXjg1MDdbvlptqwd08yT7Pym7uBCTv0OSm\nIME2B2jKe6KwLgT2wIRoffCh3WfVCGESvUxXNrIhWPLzgFTHzXKQWGUUiEIHfFyBm+qZ4TMP\nNfo4K7q5C5BqPXFWdo1kNOXdKKcrn9HGfA8sxYgNW73Ccv84d7Ev4fkeTexMynlCgBMCW3AH\nv5/KzavhpvRLtJCv8nxEFx/ny6GamysHiQQ2Z839Xe2JsyKQ+ADvUBRKimrO6wBxp+PImyHi\nIrijP2RK0We5mWtnO5Bg7XMI2cmj+N0UGDluDontBKSR93AT9YEp4Ea9J85KQGIHvo8jFkUV\nvCx5fnksL45gz9yZ/pBJRZ/nZq6dzUCC5onTSAgkUePYL1SGlbrYSt30DamKf8PIobpqkMbe\nw030Jiq/Gc4jOkGbRgMKQKIHvm90KosyXBNbGLE/aNuE3zDU3dt8dgZW9OEmved7lLuZa2cr\nkAyOeIi/fj8JO607R0fauc2uQ7WdYq6LywQ3ba0apLH3cPdwHSj5GvOuj0aAQXZDpPdjdDo5\nGNHq6Hhm9wbpbXlwk0gNqbtMaoxkuZlrZ/vOBjk21Wcoc5M+b2+7aXR3c1Vy09Q9gKQX4aIP\nvoZ77megwaPe/Kln77Pfp1NPy53+qW3ojv2Zbhr+mc9E89/gPkOdK2Iu4m567ZzZTeidfIbc\n9zA9s5MZZ7t5bOemqXsCyXkPN9ukd/adUzy3p4Pnm9GAsRrJHk3Jtvkindggb1blGO0QVkVd\nPTE6mpxnnrbRr1jupi+fj0j+9Wukm9mq4yGe6uh0EoPioZvd5co7vJu5aeouQCp+q/lHrOSr\ng2SOThUc+SLxNh0DyeCIteNPRgzzQYmRL+EJLXfTZ2cs/7ZNO/nrfRyJt1TadvI5mNq5aeou\nQLI+J4NU8SVvY673Nkdi7QOJD1+BBd913ZH3efOB/1J0cKrYR10UV6mREtzMtbMpSMrOoJvg\ntNTxWwcXfje7mZum7hokK9T61fI27AK9dgdwArUjiekBrkMLTt01ZH2zjCM7Lfeh52Yg2aFm\nQh9jdtYFyVe7X3wgyX4E1U7uuJvqCcdmbpq6G5CIZ6sVYPzm1Dfn5ASkgqTL3Y0kObrYE+LC\nqdutrUYXba1rpDE3jZSmvDyqACTz6kj/fLd+N05LjCPB1FkiFqzdRr6DLzRypN4DSEu/1TzB\ndfOpI7XVjSTuD13B+P7j5cyHtcj+bh7AD1136oaK3d9RN3NNqAiS382LB6Qjd1N3e3fi1UeK\nI+mmftdA2nfwhkaO1JWDlKVEN8oDwiUPg0yOzEhH8SSMGt+vR6fq+0Y0wL0sHv0S3tD57Kxn\ns9/Ni6ehTO1k4370+2yO7GGJs753xNwMzwsU+nLe0IhbCFJGQLjkQZDFkQXSSffSssaIfl2P\nvmtIYxivF2nTGKlsZ5vOBvDTb05D+ShvW/P32dBOhqt9VuJuwli7bNplKdGN8oCUaySbIyPS\nCXBEA466/w5Mft+Lklcva0n9Ep7Q+exsAhLkyIkj3OStuh48emKnNYebCFJGwDhIB4cjGOl0\nVJ3e9Bwqiv1qceScj/cFEqh3Dg5HtpvwtMQG1V3cN0iov5q6iSBlBIyCBPuXnEj0sc0r762T\nZ8/ovAuB4ZT7Acm6PLLiMDf1YIazmHv2ejFfbPMxk5sIUkbAGEg+jlQkidGF9zAc9VuszJce\nfNCnNiNjkjcOku7p9HEETkvHq2zWsbNSL94nZbr5cZ7LTQQpIyB8CmVBXo5EpBPvXpINdTbC\nW5a82pX2eNPHNn39tOPf2hs6n521QTo4W3UcOtZb9jKwOWJ0xW6dlC5zuZkIUteDA9+aRqjT\ny85DR5CXjYCkLoLdBr2KxFp1F90MoY356/Fiib9SIrdw46Hz2VnHZp+bdkOZDVLV1ZGaI4bK\nfqPRbG6WgOT9297Du2taQKlyvaoLUoCjC3t+DwxhYaz4Zhe+fHT8+DFOoE6zZNsgyZAAR8xN\nipE+LZ0v9DFIT2LzujnwcvbLBxKf9ruTc4CzkA7OZax3kvuKJf/TmDZ8IyCJoBBHl/7Em3Fy\nTBBrhxxFau4J1MrGbd7vAiTzZ0OQFEaaIzUBLZR3hFhDN/NqpND/vWrVRXay55bcKkjWSH/x\nyLh6tdVFlDw/uRqSz9w4WxK/hCd0PjvbgQQNpU+gcIxMjmhiRi+DL5eWbk4AyZx2tevGaNs0\nSCGO6ItDZGcdVXcRg8HYyVVKFPvZyWZnIEnvghXS6XhRnXVU4LR0sjg6zOvmpBqpN/9Ioqgh\nSEtKPblsPgh9Yg9AqwZt113Zs8+m2CvBD313tgP2JuXdwbuV2Undk34OdgbTmtvNRJDU1ZGq\njsyLINhrJ6+WnGuk7dVI+uVhvb2F6URfVmVOx+GmJlshZzsg78v5Q+ezs4LNqkLqfVt5fWRO\nXabtVFHoEx+06jnbAXlfzhsacSsVpGx1o6RsESQfR+qjdTtDTFl6EP8QJPe0ZL6Fb7Dz2uvT\n0lm/Uw88VvwxbXx3PDTiVjOQ+tH3+t0/SLrkRZDFUXekjQ/58axmKeSXxYGJlHU2ae+biIfO\nZ2c9m9UkWeaEgNZpiXd+KjvZxNQ+x2Zysx1Io9oeSPxzJ3TizzzLSPwmLBigqqoiHsvNZu8g\n2d2fx+4K4vARqiyALkBNdF7CTQQpIyAYgRf9jQMktp0ufHSyiCRuv19ZiDkdjz34v5eJ5n0J\nb+h8dlYHyTwtdaxCknE6/sZC67EjpoXcRJAyAsIlVvFJrwAAIABJREFUT4Nu8Dx45FNuyZcr\nCrx4hfRhTsfjPEOzc5DkfKrGaYk37ICbukIyJ11byk0EKSMgCpLJkZiagUVSM00f1U3D6Pzt\nvdol50v4Q+ezc7LN4CaSfVoSHAmQwDMop4u8NIIVvyeX5m4iSBkBEZDodbEueTgFvtHUgDcN\nQWpmf95Oe+0MkCyOWI+diiMtPXmfhlzGTQQpIwBsh/2yBzHvjSpAg6NebrtcP05id5Xa2TfG\nf58gwVEN/c30RTSUL7x+5y+PGkyWt4yo+Obl3ESQggGsZCUwbN1bNzaEDnzeG8DR5aQ4Ypud\nt/qyXM6+KQZi36sgdD47a4JE/7YayvL1YNKy68ARiH3Oz74gNOIWgmSJksKudSNvfbV04LMI\nyZI/XmCFxOaJEjPomk+V977zp8wm/b2m8dD57IzbLE9H4zGc+p2/QZn/Jdz8+Dh63PTbOZOb\nCJKWKua8lA5ilgGzR4EW81DlfIg5A6zO2tHvtQ2QdD2utqjNgZQOF6t+hxVSxyqeoXY338IW\n+1oIUr5yvbKaFp75SpJSCoFEG24fAqEjfWOc9Sb62Pe69zkbbglums1mqcPFrN8vsEI6g2kZ\nrnxvqeDj5DO5iSBlBPi3i1kG1FsrOUdnOGjyZJ1BaVg3P0jE75v9Cr8yO+H2hBZcKMA6LV2M\nKyT2Ht3LyaqMRnNBkPKKPtcrEeD2H6gYxxTdwN8XDo3qRhDPQIuCVz1MSd+rSqjpWthj4u6Q\nmT+/sPRcWo66CXc+XHwgievNI2so23NdcK+xsyGmvKLP9aq3R3Nd7MIWG7uI4Ayg6jF92U9H\njwb37HmWUxbnfuGCUMM1201iukmq1UhSYWBADBMkWL+L4NOVX3B2H0ZtJE5LYn4zBCmizKLP\n9EqePd3CVjE6Y5jKyaub+ut8kq9skdFpJy1P7JoxXUCzohfuhV/GbNidl794g4QHndHfCUny\ngMQnRR/OPh+Xq/siy9HHjhAkKsKXaUWf6xULOB7dWsZPzMmb0k29i5QXKbhl1LHrJRYJVkvq\nzfSpxTcl1HXTMc/jZvBlzCHxNyQP6PQjbva9uwcsgZv8QyV9ZO9SPtOXK+u3Ktd+lfJ03QNI\nehEv+vyvcKQYOVuNl2AH5ljSGsARK/HKb/X4c8eSomV+CD8S7VOrw4TAhedlzNOadrQC6tzO\ns5N6Fs+g6uKtkQ7OVPnHK+284SNATpcj7zoA56Xx01Kkq2FnNZJcjBV9jle0wFhl5Aapmkdc\n7jgpsRpH1jzOCyGta6Jjb2wD6c1f9Ny3yMuYoZuZIPF6xd3O3KRBnnOQ2CUCEnWZMnfmNh8P\nTv0+8rUQJC7CFolFn+EVHct1DESQIAUGEpuDfW7OFFri1qH462hmD8fWBcswWvJ1mnbgcwWQ\nbvTFrd79WT198Y+RoteUgz7YggJjXHCexAUnfzXbB7f1eDFPS/GvxdXMTVN3AZL1uQZI9JW9\nSUUP12y7lZAN0lWt6In2YObiq99c3RtIg5n2CUNJzaYgriBhGN3EzNVVkq7feU1EnyY/scdQ\njhd1M8FIIPy1hBAkKqIW4PN0kG4de92bv0tB9mWnpHQ72EG6QvJESgNpts4Gx2O4OQOkS7qb\n8PTUnwU4CqTDjYf3H/zGK6uQzjE3x+v3lfXaddZkww4FLhY1Jj8h5sLZmgqSrw/Jsgm0PmqB\ndPJHCqZ2OByiT/wFosVCXTfDL2NOBsl081boJgWJS4FkDHbUV1LCTcsbM8n53TSVCJKYl87c\n0Ec31AMptejDbugHlkXD+xg1kQZ4S97Z4oAE2++yY9zX9z2WfVjVin5M4Rz0jTW2KnRTg6RI\nMkE68ZadzEyGeC+RFndz4IWeWf72rG2Q9BSPnboXIOd+7PSckJ05uX5YM461UyVPx7DIG4X2\nVZDpXxJIt4sfJN7NIIveX/KLF32xndJNYWapmxAkOdoK/oozHcYg3l4N3AR2wk7Cpd3Matp1\n6j/vjPneLWHNBxI1/Hbjr1dJ9N5f8vYGVSHJIF3IB1ry7KUTctvZ6hx2UnOaiaEvlxHayM7b\nZbqbACShm0xRsHe6GBUSf4WHtHNlbmZ0NnQ2SKISsmYpXh1IaiAPvGEBJ54xJFvmhwTdDmGQ\nmCBIoelttO4DJGpmJTftzTZIl9NRzcpwsECy7VzazaxrJBMkWSn1o9Pl+zUTSKcePgMuZE4s\nBxQdSWxvd94UK/u+9aNJOtIoSDaUiV8iHtrCTvGzp7o5BFie3GSaCiR2E8nn5ihIc7uZ1bSD\nr5zQ10gd3GbNoR/TPCCdLh6QzInlgOIPOKSCJNshsOjtht3yRT/Vzqlu+kC66HGuZ/ZE3+ni\ndXN9p6WMpl1tzQVSp473yiA5r1z2vhA4/yp4xSCdzDleuGqBdLsAkPgU+YIj9/eNnpbGAwpC\nI25tHaQTeNTseAE9Sv4RqMq/a4Juzhae5cEoZfG8TEYZrhekwcxOV0iT3Lz4QVIdeGf2ar4T\nd9N8onyVbm4cpA688ONyNOZvinqfdK/CqZG4eFx2ah2K/Bru/Q1nH9OCIN2MMduT3AyCJH/F\nWexkusm6blbp5rZB6mDJGw+QnePep4DknZjAfrvyNdL7G84+pgVBMkZqTHTzmgKS+67qAaR1\nuokg+fxLuoUaAEk3Q4y3UYylBuKtFaSuECSvm9eLfYoxum74HPm2m6FhDW72s7u5aZDiJT8R\npJsvCJ5C4dsoRlNLmqerILSZnZPddOpqB6Sr7eYlGaT53dwSSIbYjKnqWVc6cOUIQtmbesPd\nCD1f9Elr+vjrAazp7zpej8ec33c4rO/haSjqZtfCzfN5+B/+O6h//eAov4ly7Nfv5pZAcs8o\noVPo5XwV3QBZp6nxGsl633IsscVb9dl2nkAO093kjV5Qw3juyt2Rm5sGKVzydDENJDjneyTK\nxR1R5qS20OuDp9hZw007BnXUcNP7RPla3VwPSHIkRGAuuwQ5PkRBSu8G8G4PzSnpRhoreucR\nznsEqcBNC6Tg7W0YZb1urgQkAqdnKk3QtkFcq/bm08wX9dpEGcEpsQSQ7KklwwUSKvnFi77U\nzkslN609E0AK3UOCuewcpK+Ao69VUj8O167Bf/RBmhprmY+1pvmf1Zpf+R4OoXWVn9tYTd28\nXq+x9ZX1SbD1it1cCUi9btqhUHeo9YCEQt2xVgTSC5l4jYRCLab1gPQyubMBhVpM6wGJVOpl\nQKEW0HpAwpoIdcdaD0ifuvfGGaJQzbQekH6Qpx+Nc0ShWmk9IE0f2YBCLaZEkKwDvMqxXh2k\nN5SjCeWz9FdfoSJuJddI8Zm/S1S95lna5jUK7aypiFsDL3Sc0t+etQckNX+dWHtm108XgjSD\n0M6airiVVyOBWfThhzJh024GlXqJdvoUcasQpA5MrIogrVilXqKdPkXcmlYj9RVB4vrx9KUw\nOSx5n4rNRDs9iriV2dmgKyF5rVR+qeOP+N4Vk7S0zWtUqZdop08Rt5JBCqoySBOGCi1t8xpV\n6iXa6VPErckglfe9+WN+60hpgkvbvEaVeol2+hRxa3qNVKxQZ8NLaYJL27xGTSifpb/6ChVx\na3UgkWKOsOQ9mlA+S3/1FSri1npAmq6Z3HwQmpRGrS8zpvXbCTRi7GymBRVxC0HK1oO1npJG\nc63fTqAHY+UEIUh+2SC9vzx23eNL+VNJM7mJILVSxFkEKSzneSRxkVT8VNJMbsLili0Rc/0g\nw8Xmh7eHB2MfBMmrsLMP3DTL7dkVcWs9ID139MG+H0/dc2mCM7kJivvBv5Ygqc3qfPogj5KZ\nvuvdguRzVtr4APedVRG31gOSvBG7+huyoLPBKG7rs+doWOAwmFA+c31FLQ9I8LPt9vyKuIUg\nZQuUsSQqBBIMNj/M9F3vF6QHq233BpxbqGF3JyDdWdPOPmWaGx+Mq2N3XwTJJ7tGkttskBZD\nKeLWekC6s84GBKm+PCBZdbxr+ayKuLUekO6t+9tptdsXQ5FrJOxs8CrgrN20w84GU1u4Ievv\n/lY7wT4J7P4eFRzZYLmlTIOuz66IWwjStoV21lTErdWA9JXQ5dvz9/IEl7Z5jZpQPkt/9RUq\n4tZaQHrqOoYQKX+KAkveownls/RXX6Eibq0EpG8deWV/vJHuW2mCS9u8Rk0on6W/+goVcWsl\nID11r+Kv1+6pNMGlbV6jJpTP0l99hYq4tRKQwHCG1Y9suCtNKJ+lv/oKFXErESRjurnO+aNI\nIZBIaYJL27xGTSifpb/6ChVxKxWkvho/RppST50cz/Bj9UOE7koTymfpr75CRdwaeLkO+tuz\n9oHU6T/ApMV90QypcP+vCp9ndbVERfxRySC51rssbfMalVkmUEt/9RUq4lZG084gJ/B/jozd\nSfeJfs23T90j3Eq8MYlcmMEXv0Lb8wOCEWJB9bIvCc0rkil21vydd+hmXtNuFKccGbvLIavG\nmFXi1EhEL0mPII2H5hXJFDsRpByQ5IfqIPX9t08DRp+sm0iEL1UDjuglcRp+1SxGkArsRJBS\nm3ZibV4jWRdLOUrZnZgLGyRN2L8G5WWPGlHmoYcgpYBkKx8bbxqjInBBiCBHbVChTNUs3myN\nxL2CXTW+dZmdCFIJSBNum+okEvYhbKFrHrAkcBemahavE6SPRJlpGW4S6F5oXWjnNkE6mJ/D\nKgWpgvJqJPB5wyAlAFJ+DiVWBR9YF9q5MZAOXNbeYd01SFZoc+9rgxSApXHTznYv4OaOQVIE\nzdC0q6CSzgZzK+mnlPwSIEUaYUnZZIdG7Ayte951s8e+G1ENgS3X1Kj3AJJ9FRy6PM498uYE\nyYPOUp0NchFaF9p5/zWS3ZCjQ3ysvcNaOUhZau59CUjhygdBSv4VbXIxQy2MGETbadplqbn3\nuSAxgtbUYUvgIrQutPN+QXK7FWRVhCC18T4LpNGuAwQp+Ve0yYWH2g06ilEobuTgQ5AyAtJA\nshpzCFL+L5kPpBhGCFIr78dB8lwOrQ4kHNkgxDrozE1W9wKC1Mb7EZBq9SlMAsnqaJrPzjsD\nSVwVGaF2J92l7zrzc1gIUkbASNdc6+zHQ53+WgTJG6D7FkCo493l0l1OZlphIUgZAYHtFKF5\n+5m84h22x6O592x23g9I8LpIhrqnoAGjrjc5QpAqBTjbdU20OEjsQDgOGCUPs6xs592AdHBD\nPRQNHJ1OFkcIUqUAY7vZmFsYpOFIOAwU3ajMvWez805AsrrpWKgPowulCDsbqnrv2e5cES0I\nEh3JcrsJhjKKvrKd6wUp9fkTqNPJNyQl4haClBEgtvv6FZYC6cAhuhxVaPLl8R0rDwoZyxiN\nquQblno60SU7N6V+JQQpI4Bt9/fOLQGSqoYuiiOnWT+fnQ1qpCAaJbm4t15ZqKdZdwL1+9nc\nO6wtgTSDwPltYfGTpTidHvmKn0hraeTAzD6SUwOm8RII8GNk9zKAUxOPa3K0F5DKLE4P8Bft\nSFrVayRQ2PwwOPIeb14Z9ZfkW4iV7Zz+OzU+td0MYHS5ymjS1MFE6J/FEYJUIyA2kHsWkERh\nq5uJEiO6FE06OtmTldZsdk77nWYFVNnNEEb8QQldBw0mGhid6/fa2XN/WxC4TCRQclcgjZwo\nW4PECls8vik2aYw0RXfYa+dtxVV1M1wdXZix8jPFyKqOGoDU7Ruk0ckUWoLEC1seDyL0Ktt0\nontBHAP3A1L4OqiqmyGMRP2uolEbjdr87Ek04tbAy1Aex789ax9IHZ+3uFfzRfKFnikSziM5\nMmXX/YAki3sBkFS742CGXmlldDqpXrrOE5d9ns3O7IbyHPeRBowC9fvViMZsNJt1vkQjbiU3\n7brx6fPNLaOc3AdI8Kw5J0hmBxI4r7LQgaOL7umWOzrjGkJFT/hysccoiodV5bnJXPPX77K3\njofyprHe53z2Jxo5+NKvkTrPJPrgo/2il/E5JO8BpMTpSuqC5A70gc2Tnl8lH08XQE4HQs1M\nfIpPFFloZ/rvHK/gq7jpm1LL6O6UoSeLo/MZhhqZhJUJkvqQMKf+GCrrByn9GrgmSLrdLmcp\ntIZZ0qPgZJKWBdLIRJGFdqb+zpQKvoabngclxFnHfAZWXmOqTQqj47Fdr524+PHVQnbtNPrm\nsZWD5LkQngWkmw4I3Ys/nW4Bji5p95EIXNjrQjvHf6fdu9AUpIMTID0zn4E1umouoDqiPTn1\nQWqhVYOUd1u9Ikhg4Km/v+l2Oh2th44gSEn3kQhc2Ou+xQSRcMzbLLLG1elRc8bYOjEWRB+K\nZzPa8ZiaH4LkC8julZ0E0g1KBjjzTstdT0dna+f9k2fiFYELe11oZ+R3Bnq5W9ZIZucMqMCN\n+ujEoznVkbDYPl9hjZQZUDCXcGnRezraLr2foht9XuJ66qMgpTVGCFzY60I7A9uD94ragWRe\nVfYQI4Mj8cQRaNbxleDneLxi0y7Xe6ihDZKbUmHReyC6hOqii7jz4QEJ1kL9JWXyEwIX9rrQ\nTu/26O2iNiBZ7hkeG2NUTzya08sgq6PrNfG0xIQg2YoUfVWQ/BQFbiEOx8BN3H+NVkjOQ9N+\npwhc2OtCOz3bR24XNQHJxgjGsJp1LJqnt45qqI48uUUOPgTJUmxMXUWQzBLW8t1CvFA+brLo\nIxVSd0lsjBC4sNeFdtrbP0ZvF7UAyeLIiGE36y6wWcc4OloXRwhSjvdQ8XNoPZBugQB3rjUm\n0apjyxBIV3ZQZIDUcmQDvDCaEySDI17lyxiwrtYDq2Qo7WawMdoSSCSwudFrXUbOodVAugUC\nrHvx1rgfFySKDnt0gs0mxSrT9FkGxpT5S/X2j8TxIPVBghxJ10QMH0ZqtPwZNuuO9gAikElY\n6wbJOEOCzWJB1AemIu+BRt8u2Rokc3y3uoaSxRoASX0avv7JmTC5XBm/B26vMGdzKUiAI30B\nymNAjsS6E6FnE6Ojrru6rYBEnBqJ6CWpDdJ4Y6QWSDdvgG/2Typ1DDggMY5U8Ac91WYU/ZjS\nfw/cnjEvTGWQYHfdDQZcrMsjvhKPnQiKQKtOYdTluLlqkOzGvA1SD9dTQUoYu9IUJOMWohwU\nZrw0zneNdLVOtQuD5LtnNBNI3upIxAhyJDE6wlU4t4hb9wCSXoRBmjymZcYBLO4UT9aLS/ku\nV3uiKD6cxRi0cm04g0zmoUy35w1gqAqS5sieItPb7c04GjBi6cnqyJkqcqMgES5ja63OhqTL\n4zo1knUV7D7E2V/gEzNKokIC6dkTNHhyq1dc41pyhiV1HnJnojNPSHpw3dkeV6f2LDk73QVI\nRLXtwJLAXZhSj2Q3wO7qyk0pAyT7KtgzNtW5POayQfJgtGjTLnskUMUaSd3Fdm9yWz6yR2Gp\nc2crvaPYE84fs8UaCXyuDVJyP1MFkIyrYPdhIx3DnbjQAqkzhzSc/N9jQvkk/R6t4FRlM4Lk\nGSxi3aKWj5SrZ2DlZZE7YGRIdS8gWaF53hf0M00GCRS0FyEdwzcBKFtKkOgOAKRT4BbYhPJJ\n+D1a4QGKM4BEney9GF3s8XJiihP40JFc21OZDalmvG3qbkAinq1WQG6p8ICMfqapIKmCPoii\nD8cYAel67bwcLQVS0djUSiCJV+95hy5erRh8xi398J4Ipc06u6HsG6wVceseQLLHrlQd2ZDz\nAN9EkERJH3yTCah96AQ3vrdeWTWSeStW/4xFQIpP+tcYJFGve0cA2wNPT0Z1dJHPwB59fqcP\nuGJaOUhZSvYeBGR12NYA6eA+Aw3lG3MsJEFiha4gGhmPM4edI5P+tQVJcuSLcrVjnAyORCgf\n6O2J3GKm1RZaA0h5T8JOA4lzFI6i+rzjIFkcXS7Gi1wWAKl4kHcNkFR95IlytWOwCsl6v4S/\nl6G73Wj7z24vRtzaN0iZ70+eBJLNkdMvThejILFOWvOy2HiRSx5IhC+njP4eHaDYFCTup+8N\naxcA0kkIcKTeJ2VxxGdXFx9ODWqkyJxApUDsECTP60svIDgJJPuV9RNAEvyIhf6QaKc5KdAS\nIDE/b4EhwGouVWWQyxHvreOpyNqnE1HzRi4mgmRMom/pfkHKvYVYDJIspQhITE5jBEqApDDq\nwGahQ86dDzkmWC70hzQ7Uyf9awcS5ygUxQeSzdGl90yawTv1MkcuDrzQ88rfnrUNElvbE3wb\nyzwtDlL2LcRSkNTEw/4o9hQ3/rRoXx6dh8sG6cKPCzpjO+1TtwZexh0jcKE/pNm5OEjUTkWB\nE0U9U6QemzAvkDhBdj9DB7a498YiVmbUSOovd47VvgSLhUEquIVYCJKfIxnFnePGl9aAiRht\nqUK7jw9xjBx1+vZN3rhjBC70h6R57RZ/deEBTFbnkRphx0bX8TO9GF3HY3W98wLZ60FHyRw5\nmAlSYLLvO6yRSm4hTgPJOcbZErYrzDckAPH3t7A/O1AjyHMtqIQKOhvkQn9IsnP683vTaqSD\n2SSzo4jLHP66DnlZSSsk+dbdoxOtEyWk307Q7Bpp9IUUOVoUpKJbiGUgBSokGOV6hY8eOWnR\nMr/KVyawUH4UQ5DU07XJrw/uJ4GUPp9zG5DsKxsPSCcx4ZZoBHOCrCePehhBXxwFEo1YmQiS\nvhSyJvtWV033BVLZPFFFIIU4MkCKpsV6lq7dqWPTM9BQk6NB58NZysokKgIX+kOCnTUehJ0A\nkm9WTVNXaY965w2rkBhA7DnYq9lDalxAFYwTSQWpgRYEqfBefAlI7JZ7eJA308jjZEc6u4nC\nRoB0hgoPl4g7RuBCfxi3s8qDsMUg3W4xN5mYX7xfHE6kyjm6ONObXA+Ao/D7MiJW7hGk4gnX\nCkBit9ytYr/Zdz7iIB27izgweI10PrvvXJ4ZpKw3DNQGib5NdyTK7XI9iVpLOQVGqjpTPKs7\nsPRsFZlzIGLl7kBKeQFfPZDYLffIW0z5XxGQBmREc17WSPYr69WeF34FlfJaFynCl7kjGyo9\nUV4EEvXMZyiIMuwiK3DeFDaavAZHLNpVbjiNdelHrNwZSMYIz/Yg8XkgAyAl1Ej05pC8LA6D\nRPeQx0LGEzTFdma+qqMqSM74EBBFnpnYuwboH3LKTHPWus6KpjX6hGfErS2BNK6Z733w+xWH\nkb3smxlaR2jRiRt21p/VbgVfLUGhgzxzXFVNkNhbyL2vu4GnJd7n3an3vJsTbtk5wedlx75H\nxK0tgTRaKlPvxefWSO6wIG8UpxYRa/PkeRIz38gDWdRQB/PYyLtGKrJzOZBCDWVj0CqojERa\njBLAEfSbRTtbAxaV8P1I/lKZGSTOkR3iTH4SBglwdOXP0gxl3oO+bz6WARR3zht9Cu2sN8dJ\nJki3UEPZnOIb3oDlAWx6fP7B5oh1d/o5Onq+R8StPYE0+V58HkicmDKQ+MVRpzu4r+cz/yR/\nxUkcUHyV91bzKXbmvzyqEkhiVk1jHkhwO0n2Y5/s6ZXgLWrRAap0uPDHJJ1ehsD3iLiFICX4\nNxrBFyQ4skOconenZ5APm8GWu76PZP6KyHAJ/rmynR/55tQBSdg50lC+npxZynrgosWRiuZM\nmY6vdQlanPOS8hogqQF2BSAJji5m0w5ECx5ONUHyaqmhqqzf5jDWb3M9eY4qPQ+kEXZgn1lg\njR+1D5D87zFtBdJNtznGJguiSgJJN+PDELmTT1WvkUpeZ1ijRlLdNjTE+65DdkNIXEiaAbxG\n6uyZvZmP597fyxD4HhG39gBS6G3AzUC6XMTcj6OzblFpkI5C7MP54gdJpyduMx6HVSc/twWp\n6HWGFUDS3Z99YL4gGuDliIJEByvaE+Sz1K5np1FndNVlPJSyfZCCL9VuC5IvxJndnQpwZARY\nFZL6JKLpM6lxhDQFqex1hpNBgk8XRxK7dp2vejkf4Q1rJX7qcWZliH/DiFsbB4m26eqV8DSQ\nAgP/FUjmCxftCok/LXNQnQ1nlclsIMWH+jYDSfbaxON03dXtxKZ1tBqnCnUdfsyVemilZ9VG\nCBJX6Vu1p4PkmXXLM/DffP+RByQVeD0orPjhrDkChc/nFTXBqmln1IRWIJmzAQbiDJWReIbP\n0FlMqKkskX6Oz33kDY24tVmQPia8VbsmSOBxGCDrFWJU+vinaVFQwPwBV1U/fciGX3DImfm5\njp0f43a2AcmaNMY7DyTt8T75Jnk8i7RcjuhCPvYn5ZngDkGKuVEeMKlGMmRNqArGpl4gSHJX\neBtJ1ldQRS8iqWxnE5CMZh2lyhOH3TjyXuwIkCyO2OsHDsJQTzQw9QWC5C2VyQEpIPEa6KBv\nu4+DZHco9eIQ8ILEu3PHB/DJz0kifFkyQeTo9gkg3UyO/HGYSydnbBQVOxs5z27xNM3X4Pim\nW/XkFrEQQcoISKuRrJH+oyA5hdjzMQ2d3vVwSQGJJWpDmSJzoshCO+uDpO/F6RtzdhxBiTuX\n40W9Ssw7J7F6P1IQIl9uEQ8RpIyAKEiqsBNAOp7jYjuZjxgpkFggSN/s3C2pkayJIgvtrA6S\nd/IlI46qbE7unegLuwd78YEEp2eA0dzpzLYDEglstl5zzhUrlSoB/u2MILNGOo7oeh7Jns9z\nIlp1bK3+nfkMOerzUYd5Ek0rCmIuiuysDZI4K4UnC9JNNtpd52nzHfnEmcbGqzlW8Rg5N3q+\nYcTCZJCsw750Vshwij5Zr0VSm/UC7pDoRnmAs53N72TrxqY8jSZ2DgWIGLJVJxv4uqEvb4sF\n7sdWAillgsjGuoGlV+rwOZ28j0Z2x3PfH9VDj1fxAOVHo+dJU0HqrOO+wtcZT4I4NRLRS+Ls\nEDwuawXY22/6hGfWSBNBcp8bV50NAiRwx+QI/3DOsGlFQcxFkZ2Va6TAQ5E6jp5owf9SqeMZ\nPlNkdHzDK87gd/CFRiwceKF3sv72rD0g6RntumFDVzzJqkhyXIQvrZYcsf4USnSjPEBvv4mq\n5+gGAZBOAZ1DAZbYQ9OnA/+LJ+mCRDW1+5uYiyI764IUerhYxQEc2SCpK82jjkF3UY26s3wh\nAYg29a5cYo0EZ1rtevBBBhao5B2ypPdu4I1HGjxsAAAMkUlEQVSRsq9RoNstPE/C6XRTIIT2\nObtNEY8Zh2HjYWiP0J2vH3wqajEhtfM4wcRpG4i54Aoe5Hnbi0C60fNRdLIg8C4Oc6ZHOF+Q\nEaA5AkMg5r5G6sw5ViFI7WskuSBcC9ZIuhvWeZpf/nEab9qd3dcg2TPb8IEE3eVDDHyR68uJ\nHQW1n0ci5qLIzpogBTkScfS9IQck8DiskYvoZWDtXzDPxewg9UYl1E2c9lulOSbCFkS17cAS\nbuBKdKM8gG4f6bhOEi1VMeSGrulhAT/L7MGNJC32oMT2QQrMXsfigDusiiOZmJoFsgMgsT0+\n5Ibz6F2+YGjEwjSQ9Ftc2LURr5WMKcALlFcjgc/LgsT+8txE5To551JPYrrovXfdNUgnvbfQ\n+WKBZD0jMAGk9YxsuIVPFsw09Qn4wxNzOTJzUVPGmN8hdGJq0f1dX/cD0g1MMhwHiRaUAKkL\n66r+CmdP07ienOdnz/aXO5rfpgwkr/zezADSzT5ZWHH0/SO6MG6gidI5GiCJPY6+yYLmbtq1\nUElng7119hrJeneiHYW+MeLWHboOtNTcdeh9YuJCqJcPBHgfg+4FPB39xw6Z2FefUD5hE7K2\nZwfceGdDECRfw04kpi6QNEcapIv3QfRLpYbyPYBktznmHdlwM7bHQaIlxY6ByETsl5FXxbIA\nfq5VIBlTGh7938Cf24TyCX+7rO25AWz2ukBXgwmS0fA1QYJPd2nzPCemvdRIWUp0Iy/gZm73\ngATabLxlN+2dyzpAHQFn+pccg9c7XyCW23x2VgJJPrw1ApLsxbyCAC9HdA84Ksh+f1Toy3lD\nI24hSCMBoyDJGaYv4oxnn0yLQDrIhBlC9iS7B3MW1lhu89lZByQ17jcK0smtq/mQ+aPsvzmq\nwB5BylWiG1kBxpjJ0UEJPEYeSKdhfzp8oeOTMnR8DXoihvrIBSn1N9X2uLXk4LrIDHYdeH8A\nuLNNZ6g7yqPqqAOvfNo6EXQefaVBoRCk9IBT71ZI1tw+l2yQDhenbrFjOI+kzwNSYg5j27MC\n1FNH4Q7pDl7qmFMwiWK5Xq9ijm+x8XRUVZj92ok+4iXWSHE3kgJoj7fdaz1UGmf+1xH2X7P+\nuN7unwvkwnq/L7rG6fw9SWda8PKqyJpk97gDkCJPAHdejs763OY+b6zlvL4Fm3YeJbqRFOC5\nBKFPYXr6Guy5dcZrpNDLy3UMPqrSvYuk8w5cIt05SMEXV4M4AY5UYsHBW17LohUSghR1Iykg\nHSQ7LftFwW5BjoIk3jPivY1U71G0ynbWA+nmvMEDxAE1ODjLaJBg0YDR39lfzhsacQtB8gZ4\nOdIvNigByTkAoiAN2enbSPCQ2SxIYviI/byx/SyKY6N4Np+1uI/O87C00R17+y6C5FGiGykB\nsLNOd8ldz3w+uuvxGtbNv7kDf/PZAbzdb+fhWKDfi78fiQ9euAxXVXw9BHT+6jL0m+azczJI\n6i/zDR5mvdy7IOnEjnC7ioEg5SrRjZQAAyT11zVSI6m5QO0ZVZ1cwKShvqlBZQx1G8k6NMI9\nWr7c5rNzIkiQIxhiWdTbDWRZJL3utLNiiBQ635yakUak8w0vCFJ2wA2c8wFHvqadnH/0IEtp\nFCQQEAMJaDaQyAQ7q4AkZmDKB6nrAxXSBby4JfbE7fg3vCBI2QEjILkc0TLKB8ntTfBfHs8F\nkjmiMTGHse05IMmZzHSIbZE9n4UqEQ9I1hOyCFKqEt1ICDDfJi7la9kJkFgTgZeTHyTfi3vi\nIJ38fQ0NQSIL1kjmlIBhkAIVErVldBhv9NH10W/IPoeFIPkCvBWSDyRVISmQPC+doPKC5Aie\nQ0/+20j1it4jMsHOCiCpqTVViHOqCVVIoyAF7iIhSK10o6O9wFc79R/n85mOV6Dv2qFr2q9G\n12woF+2EoyPD2PpwOPDPw5ZhfdDrDn7W8Y497QH0rLthfeJDxux/LUXEep557WCv9u3klxEB\nPI19VVt6OXsdLxX618eVzXV3hAmce0uVB91tCaTE00o0gD8JC58d+9CNbxHBqSfg5bG/Roo9\nUa50DgXEo0VD8xwkE+zMrpHgCySUa7H38nU65Kq2qAdhYYUEKzIew+z69r5P0aOd1kiJbiQE\nAJDODkhue2scpJTsvfNRj0eLh+Y5SCbYmWuzMe+9NTbIG6XTIbphp5/fUyNWfdl3vntIkS8X\nCI1YhyB5BC+RzuD+RM9XtozL4wyQzEa9Luo+csP1Um+8skdkgp1rASn5exWERqxDkDyCFdIF\ndKumgjT2hKxI2/wIQArF4KHbAMmY994erOqLAh6g9HB0OfJ+H6ODM/69CkIj1iWC1KlFUO60\nXCNT3rXtbKBvThn596+EfW5sfbux9b/E+ji2lvnT9b+sz2DNZguUazqPCV0fDuwy/zAosI79\n7GldBKSxm+a/f2Xub8ehgmvLXda3M3wvtrb+JSrDzQyQRjhy91gUpARlH3RFR2l+pCkwNAKp\nSc4l33W1bg680PG2f3vWFki8UurEohMfO7BHr/dgk7HKySQDQpBqZlMh7jQhSGk1kjl1vmcC\n/U4jlDahMYJUM5sKcacJQUoCyXiti7o1ZlU4XooQpFmyqRB3mhCkjGsktzrqInusHSQUqpoy\nQJJvdNEvc1HveunlFuPiSU207xeChNqOEkGKqRQIBAm1HVUAqVQIEmo7QpBQqApCkFCoCkKQ\nckQ2lMvyIhvKZc8gkfwY+VEKsinKpTSzasrPeVtu7hkk0jpCUawpJT8t8iTt3c1dg0Qy958j\nm2ko5P6metq7m3sGKdNmujdx3sJZO5vCXMoyq6i9u7lfkLjHWTH4/iUHTOtcSjOrpt27uWOQ\n2ILkxBB758TJz6Yol9LMqik/5425uUuQQFWf6BOBO6dFKcimKJfSzKoJ3aTaI0gEGpVYKERE\nBKv62ZTkUpxZLRXkvEU3dwiSMJjIj2lxiNo79bSbn01BLuWZVRK6ybVHkMSKZMWR5ib3ABVk\nU5BLeWaVVJLzFt3cI0hErPOi5B6k+dmU5FKcWS2hm1w7BEldf5L0GJn7l2VTlEtpZtWEbjLt\nEaSyC9CCsi/KprTsizKrocKcN+bmPkEifFUYr3E2ZWVf+pumC92k2iVIvEOnwOLMGIXZZEeY\nklkFoZv9XkHiXTlNk8/MZsq3yc6sutDN9HntnBnsXGWSsfSg1ZYizSNUinsXIs0jTI+bClJv\nHvj3BxJhi5yzTH4MFTO/Syo/kxpxyzMVOadnnR9DxbwLNwdezoP+9qx9IMn5VfWUdWDK1XWD\nRHJvLeTHMKK2jVAp7pQ80U2ovKZdZCrVtYNEHSJi3SwGjNo4QqW4E/IkeXlv3M2Mpl0fAWn9\nNZKutUnDGCpSTqMnN4IZlyxFEs80Pettu1kHpJFZvv2avbMhvyALip6eeEmfURzZEWDcvri9\nNFnopqE8kPTbjzrz6ugeaiTpEGkZgxcE6ZOLIzuCEVmnkB13stBNqESQgsrnB0adUazaznIp\nNwaRC5IYIzuCHb+krVRH6KatqSD1kVfyjcUsjVgiUYSEZJR8Xgx1IiS9LpWqEbxfsV8CJHTT\n0WSQyjUTSIQtSK/bwPVj8GjEjFg/go6pUoCf5hBR2ZIe3QTaPEjaHZJcIrkxRDx9mZsWKzuC\niqhO7KUt+lKhmyFtHSRtEf2DNImhYspr3dTCyI6gI+oT8PwcoZsebRwk5UtytZ0fQ0eV57TU\nSNkRVETSy1JfgCN006NtgyTPh8LeBJvyY+hIsigbRHAS6MW5l8xIEroZ0aZB0uWYWuXnx4A7\nkj6tKLMjeFKQ59H56iR0M6ZNgyTsaRujFwUhI6ZEzo7gSaEo2iShmxFtGyTmcesYvW6bJ8fM\njuBLYHahm2FtHKQCi0obB/J6tVEEX/zZhW4GtXWQZi37nKjZEez4pREnCd0MafMgzVv2rXOp\nFn2+bHfi5vZB2mzZT4pdnm12vvtwcwcgbbXsFxK66dUeQEKhmgtBQqEqCEFCoSoIQUKhKghB\nQqEqCEFCoSooESR77m++cRoMCBJqO0oFqfcf+AgSCkU18NIF/nlAktPZGbN/lwpBQm1HGU07\nOM134eSqhhAk1HaU17QDr5/oESQUSikbJFATIUgolFBG064Xl0l4jYRC2UoEqYUQJNR2hCCh\nUBWEIKFQFYQgoVAVhCChUBWEIKFQFYQgoVAVhCChUBWEIKFQFYQgoVAVhCChUBWEIKFQFYQg\noVAVhCChUBWEIKFQFYQgoVAVhCChUBWEIKFQFYQgoVAVhCChUBWEIKFQFYQgoVAVlAiS/6Cf\nhgKChNqOFgTp/wO8phr5F31hhAAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAdVBMVEUAAAAAp/8Ate4AuBMA\nvWEAvdQAwI4AwLQaGhozMzNNTU1oaGhvsAB8fHx/lv+MjIyampqcpwCnp6eysrK8gf+8nQC9\nvb3Hx8fQ0NDWkQDZ2dnh4eHibvfphCzp6enr6+vw8PDy8vL4Y9/4dm3/Yr//apr////FXF6I\nAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dC4ObNtOF6ZtetiRpNkmTJptuSLv9\n/P9/4mfuktBlRsyAgHOaetcMjNZzeJDAWK5uEAStVrX3HwBBZxBAgiABASQIEhBAgiABASQI\nEhBAgiABASQIEhBAgiABASQIEhBAgiABKYP017uqqt590WyiWr4Ea5En3uvLu7zs1osy4sGG\n7oqV4OltVb0d4p/vv7/+7KxQV3X6DzW3DGU0l0OyUgXpW131eqvYSC5I3+vvWdntF0UEKdLY\nU5/tY/v7W1+5vtyXJPd+c8tQRnM5JCxNkL7dj9tPt+5ASDn4Zyq2/8bi7z5kZXdeVKr1UR+C\nFXhd/XXv5Lo8H6q3d96eantff1d9SNbP2jKU0VgOSUuzqq+rcZDyNn1IzVYmSF+qb1nZnRdF\n3S2/hSrw1FPzod3J62pY1xzK/ahe3xv9EU9vbhnKaC6HpKUI0pf5OPqt6g7/H17fBxlP/ZLH\nqqof+9+Nobu5uLX+sf/RLXhsf3x7vJ8xPHYMVNWP1/cmqmqx2rB3f3lb1R+HXX1xevD29c1u\n/LHP8qH7cd+0evxxW4Livqh7/HPdv6hu1fvDh7p63bdkvN7b68Dw9kMP9Le+9V5Wox/v5H4e\n+qihtS/Gy7fVbhnK6FsOSUkRpHfuQXg4uWiXDsP17ve/+l8/OIv7LdrHDz2G7VH1i7HCfYzV\nbnXfR9zVquF5q8fuidFGr+/DrmkE6nZH+971Bv2m9W0JkvuiugbueppAejv9gbX5Yj5W/rOk\nt30Dbb8zJzV+v2f5cY/WQ2sfpz93ePm22i1DGX3LISkpglQ745GP3b77sTvx7Ybr9734dXuE\nbA/a37qBkrF42KTfIdvd6Mt98/sJysf7bnXfz793++zQZ7irdbv0fd17si91+8Rsw8xsBZ7a\n4/u7rtur6i+3H2+HHif6oqpu1XftixpAqp+G5+br7f8un8YGjIasVfsu8LEaeqG6f03fppdv\nqdsylNGzHBKTYlFdw4aB/jgCGvWhX/yj3WHcTb63w5Dv1euWm8f7w9Dp3H/v9vGnIZ+72nCe\n3Z3M/Kgru41e7/pxjhW47639KPGx27Q7dLt/0fL5l27Vanph03Pz9bZw+i8YeHbv1+YpUt8F\nDiPKaujW6vnlW3ptdqJuRoCkqQ1Buuvbl49vu8Xv7ic6f/U7xetqlLW4Vzsc+Vj91R1Q37br\n9sHvxj7e/nBW6yLjCfq7ym6j13AWbgfqu27Gpp4XEXhugGQunl7vrR+ZRqo0J35nDgLHQV3f\nE44Xxt95EJ+2DGUESJpSLOriUtPnetpnv3e/dm8UVsa+bCzu9df9ePy6aof4X9qB2rQPTDtu\n/8O32rju28puY05wcwNPcyfnrBd8UTGQjNd7s/52zx8yhz9YZ2Efpz+wHe6NY97XlY+HD+P4\nz58RIGlKsaiP5h5xPyR+vo/qP/z1fbyk9jjsHbav0+Lx73tsh13vqh+P7R4cAsm3mrnfLPcd\nu+cYRADJfVERkOzXGwLp3RgeOhubo/GCxXjpYwDpre81jVuGMrrLIUkpgmRcKf5ed+MyZy/9\n9tjuHbX7hk6/eND9TKe7/Pu5O3kJDe2c1cxdujtdWbQxDu3swDi0q8NDO/dFRUByXm9gaGdf\nlP7xtrbOfObmunOl8ZlnaDdvGcqIy9+a0uzm6/Gtv/uIbXrv8ou5A7S/D+/ffDMOlMYqT9Xb\nu//fqtfdYfXDsBM8GhfUuh/2asNpWLfffPa3MUStwGP1+ctwsaG/YlB7jvveF+UFyX69oYsN\nw9uk/VXE77VzK9G7an5PrbsY0xH+o15cTzS2DGW0lkPC0gTpqb+b5sf9XKHdibp7AvrL0cN1\n7u7Wl2/duyHf6vnyt3VHzOth/+yO5/dx0of+8vc3Z3RmrdafoXSXiv/qRlFmG70+j5e/58BT\n28113ciXqv4WuPztvqhojzS/3janey/q9AK7P7P9w3/UTq9lvufTnp11F9vbnD+cv8zaMpTR\nWA5JS/XEc3z7tAfj8/jsaXrntTtafpnfEzUXD+rfh3k3XPe235DtX0G1WK1f1L8z+rF7YrTR\n67udsH9D9kuH3218Q/btzabD96Li50jT621TBm5b/dav1B5BHt1rImbv0b9B9s59+b2sLUMZ\njeWQtHSv4Pxor/5Wj+Md/e3dPU/9sP+puxdoOONpb6rpj9fm4iFFNyD5PO6G1i1Ct/mHtdoQ\n+cu4Rchoo9d4i9AUeOzAuZ9StYO7z6+rembS7pasF5W4aje93uAtQubdS5W527eyeqi6u2Xj\nzrj18m+35ZahjPgYhZ4ueyn0i+f9TEU9iZyZ4Mp1sbquM+82vXj1KPJBEoBUrK7rzPfURxMk\n9SN0hsQTQCpWF3aG9FFzIQl92h4gFSs4A0ECAkgQJCCABEECAkgQJCCABEECAkgQJCCABEEC\nAkgQJCCABEEC0gPpCTKFSkpJbA8VFUDaSKiklMT2UFEBpI2ESkpJbA8VFUDaSKiklMT2UFEB\npI2ESkpJbA8VFUDaSKiklMT2UFEBpI2ESkpJbA8VFUDaSKiklMT2UFEBpI2ESkpJbA8VFUDa\nSKiklMT2UFEBpI2ESkpJbA8V1aFAehjlj1rrBRI8+QP+PJLas5LRspnreX/1JAsEtimu2B4q\nqkOB1Ooh+Gz8vffZ5xjNxROC5Pxck2r/4ortoaI6I0i+FUOLki1Iac9KSoIUzASQlLS+Yl6N\nTnYDDPPR5/EUmdd76J8ay4wVnx5I45Mc7VlJE6RFSZ7MheNy81ezKCUUV2wPFdVBQRoHGA/O\n70+W11PkwVq7fzo/OOlODZJdkuXLNxZZVSuouGJ7qKhOANKT/bvPa+On8dS/whl7pPliw/KV\n2pQ9eH8tqrhie6ioTgHSMMIzV1iuFfX6wUhxQpCmB88rfRgXq4EkXFyxPVRUZwDJtHDFQfNJ\nzmuP9qykXTPnycOTWRitHsltf4XE9lBRnQAkr2HeXQEg+UHy0+MDqYTiiu2hojoJSA+mYdaB\nlu71w5xKQXtW0uhOlnQ8WBUMgDQVpYDiiu2hojooSNO11/EqqwHSFJzXGjYMen3Fy99P9ssP\n90hOUXYvrtgeKqrDgXRUHbySOkeXLIntoaICSBvpuJWUOreRktgeKiqAtJEOXEnK/a4bSmwP\nFRVA2kiopJTE9lBRAaSNhEpKSWwPFRVA2kiopJTE9lBRAaSNhEpKSWwPFRVA2kiopJTE9lBR\nAaSNhEpKSWwPFZUeSI1XgcXhAHd5VoTfSCq4iKKSYW1WSUUBpLxGUkGARE2VCgIkXs1gPypJ\ni4rtoaICSHmNpIIAiZoqFQRIvJrBflSSFhXbQ0UFkPIaSQUBEjVVKgiQeDWD/agkLSq2h4oK\nIOU1kgoCJGqqVBAg8WoG+1FJWlRsDxUVQMprJBUESNRUqSBA4tUM9qOStKjYHioqgJTXSCoI\nkKipUkGAxKsZ7EclaVGxPVRUACmvkVQQIFFTpYIAiVcz2I9K0qJie6ioAFJeI6kgQKKmSgUB\nEq9msB+VpEXF9lBRAaS8RlJBgERNlQoCJF7NYD8qSYuK7aGiAkh5jaSCAImaKhUESLyawX5U\nkhYV20NFBZDyGkkFARI1VSoIkHg1g/2oJC0qtoeKigFSfVc0UFtrMGt2Pvtf7Of5Un4xF6qk\nougg1dNDKGAHlR24kP3KL+ZClVTUKpBqOwCQrChAIqVKBc8L0jyAs0FyeitlBy5kv/KLuVAl\nFcUHyeiZHJAmwn5vJflXHlIvUomU92WAJCH+xQaLm7r2EtZK2YEL2a/8Yi5USUVl9Ehzz+Oc\nI5k/YT9AoqVKBc8LkrMIIAWiAImUKhVsbi8XAwlDOysqZ7/yi7lQJRW16mLDMmAsV3bgQvYr\nv5gLVVJRGXc2LO5w8AeUHbiQ/cov5kKVVBTutctrJBUESNRUqSBA0nXgQvYrv5gLVVJRACmv\nkVQQIFFTpYIASdeBC9mv/GJKr+QLQNJ0oHT7ARIxVSoIkHQdOLL9+GQXIwiQdB04sP34ZBcn\nCJB0HTiw/fhkFycIkHQdOLD9Eyb4ZBchCJB0HTiw/fXN/kDKbQESPtk1615IsU92KQog5TWS\nCkZBGijCJ7sowRf0SKoOHNh+fLKLEwRIug4c2H58sosTBEi6DhzYfnyyixMESLoOHNh+fLKL\nEXwBSLoOlG1//DiKT3bRgwBJ2YGy7RcdkCi/mLIrCZCUHbiQ/cov5kKVVBRAymskEQRI5FSJ\nIEBSduBC9iu/mAtVUlEAKa+RRBAgkVPFgy8ASdmBou0HSPRU8SBAurT9AImeKh4ESLAfIJFS\nxYMACfYDJFKqeBAgwX6AREoVDb4ApCvbD5AYqaJBgHRp+wESI1U0CJCurd5+qWzK+zJAkhB6\npLxGokFh+5VfzIUqqSiAlNdINAiQGKmiQYAE+wESLVU0CJBgP0CipYoGARLsB0i0VLHgC0C6\nsv0AiZMqFgRItyvbD5A4qWJBgHS7sv0AiZMqFgRIN9gPkGipYkGAdIP9AImWKhYESDfYD5Bo\nqWJBgHSD/QCJlioSfAFItwvbD5BYqSJBgNRK2YFy7QdIrFSRIEBqpexAufYDJFaqSJAN0j8R\nrTCAIoCU10gsCJA4qSJBPkgvQQEk5vID2o9KBpYDpFbKDpzIflQysBwgtVJ24ET2o5L+xS/s\nSgKkE9kPkHipwkGA1EnZgWLtB0i8VOEgQOqk7ECx9gMkXqpwECB1UnagWPsBEi9VOAiQOik7\nUKz9AImXKhg0KLDXDgsgncf+jOMo5JVBAXUTgASQUElX6JF6KTtQqv0AiZkqGNQDqRr/r+R2\nf4CU10g4CJB4qUJBkwJ77bB4II08iQgg5TUSDgIkXqpQcBuQxASQ8hoJBwESL1UoqA/SXkO7\n+q5ooLbWUHagUPsBEjdVKLgBSLddhnb19BAK2EFlBwq1P+cUOSXlF1NmJS0K7LXDOsQ5kgek\n2g4ApAYgsVMFgpogjWO6fYZ2EybzAM4GyemtlB0o036AxE4VCKqCpCAOSD1ARs/kgDQR9nsr\n0T/zODK8k0qpvC8DJAkxQBoosripa6dHuvzFBvRIzFT+oE2BvXZYxwBpeKjnnsc5RzJ/XtP+\nBiCxU/mDVwDJWQSQTOXYn5LyiymyklcGCUO7BiABpKQCvNgBY7myA0XaD5AAUlrmDQyEgLID\nRdoPkACSuJQdKNJ+gCRUSYcCe+2wMGXxOexvrD3g2V4blWRkA0izlB0o0X57BwBIpFTeYC5I\nz0EBJOZygHSGSgKkWcoOlGg/QAJI8lJ2oET7ARJAkpeyAyXab19rAEikVL7gC0CapexAgfY7\nHRJAIqXyBQGSIWUHCrQfIAEkBSk7UKD9AAkgKUjZgQLtd06RABIplS8IkAwpO1Cg/QAJIClI\n2YEC7XdGdgCJlMoTdDkCSIoOlGc/QMpqxBPUBsmcZVUKAICU14g3aHMEkEipPEGAZErZgfLs\nB0hZjXiCLkfkSpJB6ma06x+E5okESHmNeIMA6SggDft9NfwToAAg5TXiC74ApEOBNPRIAEku\nIg7SM0CipvIEXY50QKrQI0UTASSh5ecGqTtPEpxJHyDlNeILAiSZSi5GdtIguQJIUhHx4yhA\nIqdaBhccKYMkwgBAymvEE3Q5AkikVMvg1iCJCCDlNeIJskDCdx+GgwDJkrIDxdnPAsn/JaL4\nyrZOC44AkqIDxdnfuBxF7K/dHgnffWgIIFlSdqA4+xkgTTOo47sPfUGAZEnZgeLs54OE7z70\nasnRM3XTU4J0NS1OkYL21zcbJHz3ofXMA5K9dliYsvj49i+vNYTsn8+E8N2HviBAsqXsQGn2\nL0d2QZCsDmhYNj8CpAVHAEnRgdLsp4PUybk2h+8+nLUGpK9BASTm8qOBhO8+BEhxKTtQmv0Z\nIOG7D73BJUcASdGB0uxngoRKhoKeDgkgKTpQmP0ejgASKZUbBEiOlB0ozH6AlNuIGwRIjpQd\nKMx+gJTbiBv0cASQFB0ozH6AlNuIGwRIjpQdKMz+ZskRQCKlcoK+kR1AUnSgLPsBUnYjDUCK\nS9mBsuz3gfTVXhuVJGXzcQSQFB0oy37fKRJAIqVqdgCpm4jL0moOAFJeI24QIOU20mwPktRc\ndqYAUl4jbtBzigSQSKnsoPcUSQOk29QvTTMXL7opjgBSXiNu0NMhASRSqiYIEv+yDW9ot5hL\nfw0NACmvETcIkHIbaXYA6WaSM8+lD5DWRgRH9gCJmarZHqS5O1r+yxVAymukCYD0DJCYqZoQ\nSM96PdIwtBsfAZJURAGkrwCJlsoK+jskpfeRRPd9gJTXSAOQhBppAiA9A6Reyg6UZD9AWtFI\nkwaJXEnc2XBs+/2nSACJlKrxg/QMkAYpO1CS/f4OCSCRUjUAKS5lB0qyHyCtaMQMBjgCSIoO\nFGT/vAM8AyR2qgYgxaXsQEH2e0D6CpCoqZoUSIxKAqRD2x8Y2QEkUqpGEiRMWXxk+wMjO4BE\nStX4QHo+OUj45lNv0N8hASRSqiYBEqeS/3wKqiiQ8M2n/iBAWtFIcz2Q8M2ngaB/ZAeQSKmM\nYGhkdzKQ8M2ngWCgQwJIpFRNHCRWJQ8FEr751FWgQ/oqlV95XwZIEqKDhG8+DQVDINlr50v5\nxZRTydDI7lQg4ZtPg0GAtKaRJgoSr5KHAAnffBoKAqQ1jTQXA6kTvvnUFwxcawBIpFRNDCRm\nJY8HEr75dAHSwn2AREo1Bz3XGs4MEr751AmG3AdIpFTNAqTFyO58IHGk7EAx9gOkdY00e4C0\nalJVrwBSXiNNGKSv0iBdRcGRHfkdOSpI62be8gog5TXSbAiS8ospppJhkOy1wyKCNO30w8R2\n3dx25kTg1TgJK90kgJTXSOOCtHQfIJFSNbuAZM8KaU4PaTzlwAGQ8hppAJJQI40L0vIUSaVH\nqhaTrC4mAgdI3IgkSF8BEivVFAx3SOIXG6yRW2gWcIDEj0geRwESL1WzA0jjVbvlAM9YwmMD\nIOU10gAkoUaaPUAiCSCxI+tB8rgPkEipGgekNZUUBYmHBkDKa6QJgTS7/8leG5WMZ4t0SLiz\nQdGBQuwHSGsbaUIgfQVInZQdKMR+gLS2kQYgxaXsQCH2h0+RPgEkUqrGBsnHEUBSdKAQ+yMd\nEkAipRqCsQ4JICk6UIb9AGl1I40fJJMjciUB0lHtH3YA78gOIJFSNRZI3g6JDtJRpizmSNmB\nMuyPdUgAiZSq8YJkcQSQFB0ow36AtLqRPhgd2QEkRQeKsD8M0ieAREzVmCD5RnaMSv7zPiiA\nxHZme5D8HRJAIqVqfCB9BUiTlB0owv7oyA4gkVI1ACkuZQeKsL8J2f8JIFFTdcH4yA4gKTpQ\ngv3xkR1AIqVqPCB9BUizlB0owX6AJNBIEweJVUmAdEz74yM7gERK1QCkuJQdKMF+gCTQSBtM\ncASQFB0owH4HJNd9gERK1QCkuJQdKMD+RIcEkEipmhhIzEqeEqQLKGG/VDPK+/L1QBqnVZUU\neqS8Rhr0SEKNNLF3Y5VAWmFGSAApr5FmAdLCfYBEStVEQOJWkgXSPMv3OO33+JAjgJTXSDOB\ntN7+y1dyc5Cq0Dyr+V9TAZDyGmmmkT1AWtdI7CMUuj3SzZ1qdc3ZE0DKa6QJg/QJIHFSETok\nNZBWzfZtCyDlNdK4IK2w/+qV3BEka6rvqYvKEUDKa6QZQRKw/+qV3BwkDQGkvEaa4P1BnwAS\nK1X4IxT8SgKk49kPkIQaIXRIAEnRgb3tb1IXvz+9t1OhkgGFQPoEkDopO7C3/SGQPgEkXqrQ\nx/U/AaReyg7sbX96ZAeQSKkIHRK5kgDpcPYTRnZh++u7vDUbA7W1hvKLKROkTwBpkLIDhYL0\niQBSPT04mgJ2UPnFFAGSO7KzOAJIig6UDtJ7Fki1HbguSN4OiQ4SZlo9mv2EDiluf8fLNICz\nQXJ6K+UXs28l05caUpU0BJCOZj+lQ0qCZPRMDkgTYb+3UrOoBFFGdu+pyQDSMUGKHEdTIE0D\nuJGbunZ6pItcbEiO7JKHJEP/vAkKIHGd2XBkH++Q0iDNPY9zjmT+PHklKR0SQFJ0oESQPpFB\ncq83XBYkUocEkBQdKACk8MjufcJ+sxtyF1xraEfqkACSogMFDUgCHVLkDVnjR+0urxdXwJVf\nTNEgpQ5JtgDSwez3guS6H34faTw3WtzhYN7ZcIlK2hyxK+kKIB3Lfv/ILtv+C1cy9SYSQDq1\n/akBCUCiLqeN7ACSngMFgRS41ACQ0suJIzuApOZAASDJ2X/dShJHdgBJzQGAdIpKEkd2AEnN\ngZJH9u8BEnE5dWQnDRLm/qYk2ggkQfsvW0nqyO6NnSqsY4CEz3WOonVIZPtT0n0xpYHkOSIp\ngOTOoL9a9Cz4XOeo+IAEIFGXU0d2bzRAMn4RIWkVSBf9XCftOEq3PyXVF1MMSMF3EdRAMucr\nXi1mEnyusyGP7ABSfHmiQzIKqQNStVOP1Amf6+w/05n2/+6dVIN6+3I80aYgxTokJZB27JHw\nuc6G3iGhR4ovp3dI0iBpKAOkq3+uk9ohAaTo8vjIzuLodCDhc50NsUNi2Z+S4ouJJtIHidgh\nnQ0kfK6zFUASaZzTIZ0MJHyusxWdI4AUW06+ZHM6kPC5zk4xkDLtT0nvxcQT7QfS+zODxJWW\nA6lE+iBJH0cvWUkfR6EjEkDScCCVaMNTZCH7r1hJVocEkBQcSCZSBynkf7b9V6wkq0N6ZacK\nC1MWH8R+VocEkCLLfTc1ACSvlBxIJtp8ZA+QMhphdUh0kF4FBZCYy7cDyfF/wRFACi83OUqB\n9AogKTiQTrT1yD7YIZHtv2AlYx3Sp0WHBJDkHUgn2npkH+yQAFJ4OWFkZ3AEkOQdSCfaeGQf\n7pAAUnA5oUMyOQJI4g4QEu1zHPV0SAApuDzdIVkcASRxBwiJtgUpMB5hjeyvV8n0B/osjgCS\nuAOERNuAlBrYAaTIcm6HBJCkHaAk2nRAEuMIIIWWRzqkxZVvgKThACXRlgOS2MAOIIWWp+/7\nfQOQZik4QEq0IUhxjgBSYDmbI4Ak7AAp0YYDkjhHACmwPHhACgzsXv1spwqLCFJ1M3Z8Zxqh\nan6sPHQEeQFI5Ea4HRJA8i8Pc+S9YnfnSBUk7+/uGt5VaYHVkneAlmjzAUmII4DkXx7+8l2r\nkgZHSiD1035X4xzgXaQy5zKeVxrXHR77X61pwwEStRF2h0S2/1qVJHZIJkdaIAX+3aZRXWQl\nd25JgERshN0h0e2/lmgdksXRz9TcK0Cyp12tqhRtACmzEfKlb/6A5FKVDHPk7ZA6jrbpkW72\nLySKABK3EXKHlDEguVQlk99h7eHoVztVWNTL3+PZ0dQd2SdB5lW78WxpcY4EkLIaoXZI5g5g\np0IlW00HpAVHn8IciYPEVpUkBSCRGsnhCCB5lpMGdi5H+4N0S36vH0AiNUK8Ypc3ILlQJd0O\nKXqCNHFUAEhJASRKI1kcAaTl8hd/HRMcASQ5B+iJNI+j8QsNuQOS61TS6ZBcjiyQDI4AkpgD\njESax9Foh5Q9ILlMJZ0DUoyjn02Org3SeeR2SNGBnbEDSLUvuS9zEkmDlOLofYij3+xUYZ0S\nJEEHWIkUj6PPLI7QI9nLnToyOAJIMg7wEukdR6McvVlwRLb/IpUMcbR8J9bliA4Spiwu1/5s\njgCStTxQR98dDS5HAEnEAWYitePoM5MjgGQtTwzsYhwBJBEHmIm07E9yZA5IWPZfopKhDilw\nwc7EiAHSz0EBJObyTQYkif6Iaf8VKrmKo1/sJsICSIXaHziO0jgi23+BSgY6ds87cfbouKvj\nLwBpvQNFHUe/sjgCSJPiA2Q/RzNGAGm9A0UdRwMcBXcAu4nrVtKdWDPMkedoBJAEHMhZrncc\nTXFkjkdY9p+9ks9Ujl4FOAJIKx3IWa52HCX1R1nH0ZNX0t8fvY9w5GD0y//sJsICSOXZ7x5H\nv/oxsgYk9g5Atv/clYxztDjNdI9G9zr+DyCtciBvuRRI3vFIlCMHI7r9p65k9LpnmCMTI4C0\nyoHM5UIgRTh6Q+CIZf+pK0l4/+CVOzr+xcYIIK1yIHO5sP2L0yMHI+94hGn/mSvp++SE06+/\nckfHC45+spsICyAVZr/vOLrA6E3oOMq1/8yVTJ9mvnJ79UUdfxIHyZ1seEHBEgtMfpLTeMj+\nwKjOOo7y7T9xJV/o3ZHN0VzFn+RBGualsxfcogsAUlbj6bMj9zhqUcS0/8SVnDFKD+vcKs6F\n1ABpnuKxGibEn6bSH+crnueNtLswrwCSJ+ByFH7vyLsDcO0/byVf6FcZFkejuY5KQ7tq+s87\nY753SVgAaRl48WDkPTmKYvTTH3YTV6vkfDQi3Oob6tS7Ov5BriTjYkPlgjR0Qs4sxQAps3HO\nyZF5HF0cRBn2n7KS82mmnyNvp+6r4l1/2k2ExTpHskEaO6Vbcrp8vwCSFXi2j6PLN2AXl7zD\n9l8ZpPmqp3k3kN0dLTt1ty/qC/nnn9IgzZPoT7PoT+dIlbnMmUM/JoBkBHz2W2O6N/ag3mv/\nH5PsJi5UyWcvR3Ydh/3bHtMtqvhnL7uJsPA+0v72W/eoes+MjOOo1/4/LDHsP1kln61Ceqo4\ncfSbNTL2HIv+BEhHs9+aSzdo/6vlkN5HEdP+M1XSviXkXkhfFV9FuqKfbITu+vvvv+22wwJI\npdg/nhmF7DcwinRFFwXp2aKor2TwWGRcowsN6HqI/gZILG9KsH8Y0YW6ovk4GuqK/sg6jp6i\nkvZ8xItKvnplvmk0UPSTpRBFAInlzT722wfQ5WjONxLxErTmOHqCSk4Y+Y5Fr6wDUWgwZ5Tw\nb0v//vuv3XZYAGkP+wfzJQn6M8v+w1dyKKOvim9Cp0OLKi4p+neS3XZYAGlz+4cDqPeiQm//\ncvix9F7G/uNWcu6GlhQNHVCobssq+kp4SpDqu6IBewWmNxvbfx/MBfGhez/bv/D+v//+s9s+\nXSUXBLU9D6FwoSq65VCRelkAACAASURBVDNktx3WIaYsrqeHQMBZgenNFvYPB1Bj7Mb1ffD+\n78XR8z+P7L/qdJVcUcI/rD4oUsKLgFRbgYLtf7lrGG2s8z1m+P+5sv+qc1SyJWjDEiYq6eqf\nX4MqEKR53FGy/XfDcw6XaVPpCtl/sErmQDPDsr6MkUq6OhRIhssh+39vJfhHnkyopJYOCVLd\nq9TjqGrj6eAiikqGlV1JV8cCqZ5GJCUPSFQbTwdJIKGShOB5QXIWwX5SFJUMCyAtA7A/EEUl\nw7owSHU6wKzZhexHJTnB04EUeNs9GGDW7Er2o5KM4PlAYopZswvbj0rGggCJV7ML249KxoIA\niVezC9uPSsaCCiANUwZNT1d4I5vEK2bNLmw/KhkLqvRI8Zm/cwSQ8hpJBQESNVUqqAfSNH/d\n8NMzuz5dzmZjjxf4vAxHzJpd2H5UMhZUB8mcbLXK7lnM7erKUGa+WcyaXdh+VDIW3ACkyphY\nVQKkzwZHnzPzQdB+Wtcj3aRAus1DOwg6oJgXG+ZOaPompOz9H+BA59H695HEQPpQS50jQdDW\nWg1S/m7vbPlB7mIDBG2tcu5sqHGVATquygEJPRF0YJUD0rvqh3KDEKSmckD6Xr/9rtwiBGmp\nHJAE72yAoK11SpCeIFOopJQilTrElMVc7V3vwoRKSilSKYB0fqGSUopU6p/fgsLQ7iRCJaUU\nqRRAOr9QSSlFKlUOSL2+v/24PvPe9S5MqKSUIpUqDaTbj2o9SXvXuzChklKKVKo4kCRuFdq7\n3oUJlZRSpFLFgfRXtX7Ohr3rXZhQSSlFKlUOSNO1hg+rM+9d78KESkopUqniQKrXcwT7baGS\nUopUqhyQBLVFTR8Grcoh9cfEVXglTSWKulHBgopUCiBl6sH5uSaHsgqvpKkH68ciBJB8ckH6\n8eF1Vb3+IPCppC1qCpA0FKnqOUCybjioFr9kafF5pOEkaf2nkraoqWn5OBqxfz6M8WHxw9PD\ng7UOQFooXNWHvmBOpTdWpFJUkG5i/Fg5DT1W7Qf7vr+tHldn3qKmhuUP/p8jSNPi6Zj6MO4p\nW/yhRwXJV9WxhA/muhsqUikmSNX8izFp8S3rHrnAnA0HeUPWuNhgWe489+wRm+8KhVfSlAck\n87lb6a0VqRRjaGeRE/jH0cFBmh6eRqJCIJlh+8kWf+hhQXpwxnZPRtV2GdgJ9khJnDg6w9DO\nPWzaCx+sM+TlugDJldsjjctckHZCKVIpJkjjEwWQDnmxASDJygOS078vy72hIpViXrWrpu9E\ncn9ZDdIxL38vRu7uyVDkHAkXGxYKVNUd2h33YoMrPjbeHEraoqbmcdF/+XtaybwmgcvfUZl3\nNjiVmgpmVnxjRSqV+4aswCWBY4N0IKGSUopUqpg7Gz53n554evwmkHnvehcmVFJKkUqVAtLb\nquoQqgU+RQH7baGSUopUqhCQ/qrqL90vT3X11+rMe9e7MKGSUopUqhCQ3lZfht++VG9XZ967\n3oUJlZRSpFKFgGTeEnuMOxsOJFRSSpFKFQgS5mwQFioppUilCpmy+G013s/w/SC3CB1IqKSU\nIpUqBKTPEz6P09lSvvaud2FCJaUUqVQhIN3q6l37Zz69q16vz9x4FVgcDnCXZ0X4jaSCiygq\nGZZYJf/5JahNQRpvWZW4ZxX2O89RyYx2fNFIpUoB6Xb7690do3fr30S6wX73OSqZ0Y4vGqlU\nOSAJilmzC9uPSsaCAIlXswvbj0rGggCJV7ML249KxoKnAql/e7a+a/xZO8/Nn72YNbuw/Skx\nm79wJUsHaeBkfBhoGZ+7Pwcxa3Zh+1NiNn/hShYOUn0DSNwgQKKmSgVPBJKJRz0/AUic6AqP\nmM1fuJIHA2k8RRqfOz9vt99bCf+hFxZz7wNIBwApBhB6pFh0hUfM5i9cSSJI7tzf7iypi7wE\nSjJAGn8BSJwoqc5+MZu/cCWpIFV7g7Q8VwJIxCipzn4xm79wJZkgVf28xbdpvsj+YZ4p0pxH\nMvFZVxZI9fwIkACSTCOpoMrQrkpPn28vSXLCekN2fhK/2AD7ARI5VSqoc45UeSbRN566X/SS\nnnyBAVKduqMBdzZEoqQ6+8Vs/sKVZII0PSHMqZ9CBffa5TWSCgIkaqpUUPGq3XDy4+uF3N4p\n+c1jACmvkVQQIFFTpYIKIGkIIOU1kgoCJGqqVBAg8Wp2YftRyVgQIPFqdmH7UclYECDxanZh\n+1HJWBAg8Wp2YftRyVgQIPFqdmH7UclYECDxanZh+1HJWBAg8Wp2Pvtf7OeoZEY7fZRcyVKm\nLBaVsgMnsh+VjAUBkq4DJ7IflYwFWSD9LyiAxC7+4eyHEnqhrgiQABIqGY6iR1J04ET2o5Kx\nIEDSdeBE9qOSsSBA0nXgRPajkrEgQNJ14ET2o5KxIEDSdeBE9qOSsSBA0nXgRPajkrEgQNJ1\n4ET2o5KxIEDSdaB4+18AEilVKsipJEC6tP2oZCyoAVJkTqBcIPRAurpeyDe2pKS8L18PJGsS\nfUflgaTswInsRyVjQSWQup/uBN/WI08AKa+RVBAgUVOlgoogBeZYveVgAZDyGkkFARI1VSqo\n3iMtpllFj5QdAUhSkcOAFP82CoCUFwFIUpFDgDSfCjmTfU9nTQApLwKQpCLHAElBACmvkVQQ\nIFFTpYIASdeB8u1/tp+jkhntdFGApOlA+fYDJFKqVBAg6TpQuv0vAImWKhW8VxIgKTpQvv0A\niZQqFQRIug6Ubz9AIqVKBQGSrgPl2w+QSKlSQYCk60D59gMkUqpUkAUSpiw+of0AiZQqFQRI\nug6Ub38cpLp7uCv2E5VseCD9FBRAYhe/FPujIHWg9NCEf6KSTccRQFJ0oHz7YyDVN4BEDAIk\nXQfKtz8C0gALQCIEAZKuA8Xb/ywB0u+t1Cw6hFqQqOsCpGuBVN/QI5GDiUGyJYB0QvvDIE2c\nACRCECDpOlC8/RGQegEkUhAg6TpQvP2xc6QbeiRq8OVUIPWmpt4+xNuIswASNVUieCqQ6tlZ\nDEhIwRcSSDgkpYNnAqm+ASRmMA0SQ8ovpvhKKoDk7Pa5s0KGMwYEkJhBgEROlQiqgFQ5+73A\nlQIVkPA2YgeSVDLlffmyIM0z2lX3BVX2JKtDSorQIzGD6JHIqRJBDZDMmVarm/FkDGYIIOU1\nkgi2HAEkUqp48IV1SKKCZM+xaoKEHmlVBCBJRY4B0s3qhKqV035POdMCSMwgQCKnigc1QJq/\nxaU7N+p7JWsK8AwBpLxG4sEXgEROFQ+q9Egawp0NeY3EgwCJnioePBlIOVJ2oHT7ARIxVTwI\nkK5uP0AipooHAdLF7X8GSMRU0eALQLqy/QCJkSoaBEiXth8gMVJFgy+8QTJAOp39AImaKhoE\nSFe3HyBRU0WDXJAwZfHZ7AdI1FTRIEC6uv0AiZoqGgRIF7f/GSBRU0WDXJD+CAogsYtfgv0A\niZwqGmT27QDpbPYDJHKqWPAFIF3ZfoDESRULAqTble0HSJxUsSBAul3Z/gGkr/baqCQ/G0C6\nXdx+UZCuq6GS5PmYANLJQHpGj0ROFQu+MAfJAOlk9gMkeqpYECDdrm0/QKKnigUB0u3a9gMk\neqpYECDdrm0/QKKnigRflECqpoegltNyJaa8A0h5jcSCAImTKhIcOdIAKcHRcg2ApNB4PDi4\nD5BIqSJBRZD6TqkaHqrhaWWscZvX6CZjHSeTDEgPpOtqBEkqn/K+fEWQ7KnzPRPoVzNCtAmN\n0SPlNRILokfipIoE1UCyvtZlmqjY6XC8FAEk0cajwfEUCSCRUkWCyudIy+6oiqwBkBQajwYB\nEitVJDhypHXVbhy+jTPpVzMp1XjadJvDAEm88WgQILFSRYJaIMWUCwRAymskEgRIrFTh4Mse\nIOUKIOU1EgkCJFaqcBAgdVJ2oFj7ARIvVTgIkDopO1Cs/dPVb4BEShUOAqROyg4Uaz9A4qUK\nBwFSJ2UHirUfIPFShYMTRwBJ0YHi7QdItFTB4AtA6qTsQKn2z9caABIpVTCYAxKmLD6N/QCJ\nmSoYBEi9lB0o1X6AxEwVDOaA9GdQAIm5fG/7ARIzVTAIkHopO1Cq/fNFO4BEShUKvgCkXsoO\nFGo/QOKmCgUNjgCSogOF2j+C9BUgEVOFggBpkLIDhdpPA6m+i/LzypUESIOUHSjUfhJI9fCQ\n+nnpSgKkQcoOFGo/QOKmCgRfANIgZQfKtN+8+p04RwJI0SBAGqXsQJn2S4P0eys1i0qWyRH9\na10A0nlAmjiKgdRfTECPFA5aINlrhwWQzmI/FaQbhnaJoCZI1XIGu6WYZDBWr+vhqqz58+b5\n2UvZgTLtB0jsVP7giypIzo6/MUidphEJ7M8HCVftksFNQBrnV52nrDOmXNUFybQY9vsEkJip\n/EGLI6WhXWQq1U1Aqo3fYb8r0tAOdzakgrogTT/8IOn3SJPLsWtOV75oO3wVRccRvo2ClMof\n3BOkxCzffuWANDygR/LJAMleO1/KL6bISm4B0vztR5V9drRRjzT+BpB8AkjMVP6gKkhB8fkx\nN6Wrtn4FSB4Zp0gAiZTKG7Q52u4N2chX8qW25Kxcz48ACSDJNOIN7gVSvjJBil9s6KTsQIn2\nNwAJIFE0voGEi7bBoHGKBJBIqbzBk4PEkrIDJdrfACSAJC5lB0q0vwFIYiA9A6RByg6UaH8D\nkACSuJQdKNH+BiDJVPIlFyRMWXwG+1sBJG4qXxAgGVJ2oED7Wz0DJGYqX9DhiA7S30EBJOZy\ngHSCSgIkQ8oOFGh/Y4/sABIplS8IkAwpO1Cg/Q1AAkjyUnagQPsbgCRTSfdaA7mSAOkM9rcC\nSOxUniBAMqXsQHn2twJI7FSeoDuyA0iKDpRnfyuAxE7lCQIkU8oOlGd/Y3+IAiDRUnmCAMmU\nsgPl2d84IH2y10YlydkAkillB8qzv3FGdgCJlMoTBEimlB0oz/4GIMlU0uVIHCR37u9+4ToY\nAFJeI/6gDkhX06JDIs8QSAXp5t/xAdLaiBBI9rUG9EikVMvgEiR77bB4II3T2Vmzf+cKIOU1\n4g0CpIOAZE4BWQ0PAEkgApCkIscA6WZP820uyBVAymvEG7SvfgMkUqplcHGtQQ8koycqFqQL\nyu6QPkmlVd6XLwjS/LUuOEcqzv7FyA49EinVIri8+o33kRQdKM3+BiDlNbIIAiRbyg6UZn8D\nkPIaWQSX1xoAkqIDpdnfAKS8RhZBgGRL2YHS7G+GiU8AEjPVIrgc2QEkRQdKs3/aASaOABIp\n1SIIkGwpO1Ca/QApsxE36LnWAJAUHSjM/mZ5igSQSKncoOcUCSApOlCY/c3yFAkgkVK5wVUg\nYcrio9vfAKTMRtwgQHKk7EBh9jcOSJ8AEjGVG/ScIgEkRQcKs99zrQEgkVI5QV+HRAfp36AA\nEnM5QDp2JQGSK2UHyrK/AUi5jTQAKS5lB8qyv/GcIgEkUqoGIMWl7EBZ9jcAKbcRJ+jjCCAp\nOlCW/Q1Aym3EDno7JICk6EBR9je+UySARErVAKS4lB0oyv7GAekTQCKnagBSXMoOFGV/A5Cy\nG2liIH0FSJeyvxlPkYgg1XdRfl6vkt4OCSApOlCU/Y3vWkMYpHp4SP28XiX9IzuApOhASfa3\nWnZIAImUqtkeJP9Ovw4FgJTXiBv0nCIlzpEAkicIkJZSdqAk+xs1kH5vpWZRefLd+v2V8W0U\nZJD6iSGnKYtD309BF2frejgHxinyMug5RYqDVN/QIy2CgQ5JvkcaJym+uRMXZ4sFkvED9gMk\nmUaaPUC6jd9GUVXjxMUASSCyPUg1KukJbgfS0C2ZfdFmINXmT9hvBX2nSDGQalTSFwycIikM\n7YYuaJxOf9MeaTpFut1wiuzoxdMhRb6NAn27P7gRSBri9ki4aOsN+kZ2kfeRcNnGHwyM7E4G\nUieA5A3yQGJK+cWUU8nQKRJAUnSgHPtbAaTsRoxgaGR3MpAwtAsGvadIAImUqrkkSHj3wxv0\ndkgAiZSquRxIuPk/GARI+Y00QZC+nhUknpQdKMf+BiCtaWQOBq81ACRFB4qxv5XlO0BipZqD\nwZEdpixWdKAY+5vQtQaARErVAKS4lB0oxv4mNLIDSKRUTQikrxkg/RcUQGI7A5CkXiRAogsg\n5TXSACShRqZg+FoDQFJ0oBT7G893XvZ6b6+NSiayhTkCSIoOlGJ/4/mqPoDESNUApLiUHSjF\n/iY4sgNIpFQNQIpL2YFS7G8A0rpGxqB/jlWAdBH7W/lBeg+QSKkagBSXsgOF2N8qcIoEkEip\nxmBkZAeQFB0oxP4mfNEOIJFSNV6QLI7IbyQApMPa34Qv2gEkUqohGBvZASRFB8qwv1XoFAkg\nkVI1O4DUzx3kahULACmvkcYBydMhASRSqiEYO0WSBikwQTFAWh0BSFIRIZC+qoNkzlXcTxhp\nzALu7bDiAkh5jTQJkN4DJGKqPhgb2SkN7arpP/8/ngBSXiNz0H/RDiBRU/XB6MiOXEnGxYYZ\no2nmb3MWcIC0OUjei3bvJUG6guIgUbOwzpGMHum2mAUcIO0Dkq9DQo9EStUF4yM78R6pmr4Q\naT4lsmcBB0gA6YiV3BgkBQGkvEaaKEjvARI5VReMjeyuDtJVZDpvdUjkkX1KyvsyQJIQeqS8\nRqbgS7BDQo9EStUsQXI5AkiKDpRgf6twhwSQSKnaYKJDAkiKDhRgf/cIkFY20gCkuJQdKMD+\n9sE7NyRAYqRqEiBx7qMHSIe0v32IcASQSKmaBUhfAZIpZQcKsL99AEhrG2ni9wd95dz+iymL\nj2h/GzRHdp8AkgJIrPvoAdIR7W+DzwBpbSONJEj/FxRAYjuzOUiBkR1AIqVqEp9F4lQSIB3R\n/ltiZAeQSKkIHRJAUnRgd/vbYHRk98ZeG5UMCSBFpezA7vY3040tgZEdQCKlioLEvI8eIB3Q\n/nvQdH45sgNIpFSEDgkgKTqwt/0zSKGRHUAipQJICSk7sLf9DkieDgkgkVIlpmsASMoO7G0/\nQBJqhNAhASRFBwoFyeAIIJFSETokgKToQFkg+TokgERK9QyQ4lJ2oACQXuIdEkCibJC8YVUB\npMCUxasEkPIaaYOJDgkgUTagnCKJg5Qz31ZCACmvkcYLksURQCIsdzjyj+y0QHJnsmt/ze2t\nAFJeIw1AEmmENLKTH9pZM34bE64OzzMEkPIaaUyQ/BxFQar7x7tiP89fyWiHpAfSrfKBNM2t\nnyGAlNdIM4Lk65DeJEEaeBkeQj8vUElSh7QRSNVWPZJ5vKxvVz6O9sFEhxQBqb4BpE6kSw1q\nV+3GGcDHH/OU4Hwxtprsre3n17O/10sIpDfpHgkg9aKBRD7bFHkfCSDlR7JAckd2bockAdLv\nrViGHkuRUySzoNR0EiBlnuxwN6tnVgCSBdKCI/RIyeXEkd22PVKeckAaT5HG587P8x9HewU4\nmkGKbQyQWqU/0tcX1E4V1nFAigF0GfsHWSB5OEKPlFxOHNmdFKTxl8vaP+jZvM8OIGU0Qu2Q\nzgdSbf52VftH+UF6A5DIyy8LUj0/Xtj+pllO1uDrkHBnQ2p5bGRnFdROFdZBQDIue8cvNnTS\ndCCWaF+Q3hBB4kj5xexWyViH9D4PpENMWVyn7mi4yHG0WYLk7ZAAUmI5CSRWJY8BElOKDkQT\n7QrSG4BEXh75BIV7ZLJTFSmAlNHIi2F9uEMCSPHl9A4JIOk4EE+0AUjPIZDeACT6cnqHBJB0\nHIgn2g6kBEcAKbqc0SEBJBUHEok2Bcl71zdAoixndEgAScWBRCJ9kOZTpChHACm2nHGpASCp\nOJBKpA/S5L11u+qCI4AUW87hCCBpOJBKtDVIQY4AUmw5QKJKy4FUon1A8nAEkCLLw5cafG8m\n2KmKFEBiN2KfIoU7JIAUWc7qkF7ZqYoUQGI38myCFOEIIEWWB0HydUgAScGBZKLtQIpdsQNI\n0eWUkd0bgNRJx4F0Im2Qng2QohwBpPByQodkcASQ5B1IJ9oQJI/pAImyPNwh+UoKkOQdICRS\nBslwPtEh/WynQiVnpTskiyOAJO4AIdH2IPk5AkjB5cEOydvHAyR5ByiJdEEyrE9xBJBCy4Md\nUoAjgCTtACXR1iAFOAJIweXsDgkgCTtASqQKkml9iiOAFFjOvNIAkMQdICXSBOllAVKIo1cA\nKbQ83SG9AUiG5B2gJVIEabo5KHHdu+cIIHmXcy99AyRpB4iJ9N/9mCwPYdRzBJC8y4McBS59\nAyRpB4iJ1E6RX56pIPUciYF0KmUM7F692vuPJkgPpHPJMj9xve5Nz9GvUm0rHBVIiVQOSTkc\noUeSdICaSH1AQuyQfv3NToVKtnoOgOS/SwQg3c5lv81R4sL3m4EjgLRcnscRQJJzgJ5I+Tja\nuR5kaOyQfr1zBJAWy4MnSP6roCNHRzjbBEiERhzvI51Rz1GHEUBaLA/OHOS/22riCCBJOcBJ\nJA+Sa32Ko59/+w0geZZncwSQhBxgJRIHyfX+U3Jc13P0i53q8pXM5+hXO1WRAkipRlgcddcZ\nBo7+Z6e6fCWzOQJIQg7wEinaT+Po14EjgGQtD11oIHAkNkhWFECKN+J4/4nE0f962akuXsnA\nwC4wD5PNEUCScIC5XNZ+x/c0Rl1/BJAWCnHkf2/71QyS6BsJigJIsYAzDIlw1B88+9OjgaOf\n7CYuXclcjn7t30mwmyhSACkScDhKd0fj2VGL0U8AaVKAo8CtVm5/BJDWO7Cr/ZPrMYIG7y2O\nfuplN3HhSvo5Ct36a3Ik/I6cogBSMMDlqKPol5kjgDTo2cfRcJXBU0vj/aPfhN+RUxRACgV4\nHPWG//K/CaM//vjDbuKylfRzFLrx175cNxyc7CaKFEAKBEbP0xjdOZquMfQEDbKbuGgl3WGd\nyZGvlnN39OuIEUBa5UDmchn7B88JFN29Hyj6yaIIIPUKc+StpQ8jgLTKgczlIvYzOOpGdU5X\nBJAmee9n+BT6NJd7dvQLQDqq/abpBIg6jBZdEUAa9eLBKPwxFH93BJDWOJC9fJ39PI76MZ0X\nIoDU6iUHo59djABSvgP5y9fYP7udQKj3/LcQQQCpCZwchT+hP2H02wIjgJTnwLrlufa3Xscm\nYrDUm53g6NogLTGKzhcz3hHkoegXuQ+kKAogtXru5waiUXTnKIXQ5UHynBpFptO0bmRwKfpF\n8K1tRQGk1moqQSyOrguSZ0yXhKgb0/kgknxrW1GXB4kJEYOjq4JkYxSd2XmiaNEVGe9u//nn\nn3YTRUoSpPqu+RnfAZHlvAitM6KSIwbSASs5yO6IIjUNdkXW/SF3iP78+++/7baLlCBI9fTQ\nienAxvYPbqtBtAqkQ1VykN0PJYoaImiu3Z+9/u5lt12kLgcSzekV+Mx7gt326SrZtF8s8PJC\npscgaHESZODz96R///33v15220Xq5CAp9jd3/RvRGvuLq2SMkszazbCMtCz0f5OyK7mdVED6\nvZVc4ssJlTyeTt4jKTWeDi6iqGRYepXcTgApr5FUECBRU6WCAIlXM9iPStKiMnurtABSXiOp\nIECipkoFARKvZrAflaRFZfZWaV38zobsRlLBdfajkpGo0N4qrMvfa5fZSCooaT+zeVRyDwGk\nvEZSQYBETZUKAiRezWA/KkmLiu2hogJIeY2kggCJmioVBEi8msF+VJIWFdtDRQWQ8hpJBQES\nNVUqCJB4NYP9qCQtKraHikoPJKa49zjn3BPN3mbFjdf73bONSu4hgCTdyPpNVwqV3EMASbqR\n9ZuuFCq5hwCSdCPrN10pVHIPASTpRtZvulKo5B4qBiQIOrIAEgQJCCBBkIAAEgQJCCBBkIAA\nEgQJ6Lgg1elVDtHG/kIlBVQKSOxC1xnWcDfJaSOzKTmhkruoGJCY9cpyhrnRCvdXbbtOqOQu\nKgckVr3yqstrZJWDzNcjKFRyFxUDEq/a7cp1za0xr5G8NrKakhQquYsKAakvNWeDfvWMfUa3\njcym5IRK7qNSQOoeWAe5et5QqZGcNjKbkhMquY/2B8no8Wn1qs11iRXmNpLTRmZTckIld9Tu\nINVmwWjWmFNj0wrMbiSjjdymxIRK7qm9Qartrptm/2wL8cjLboTfRnZTUkIld9XuIA0/+Geu\njOtA/Eb4bWQ3JSVUclftDhK708+4jMNuJP9SEf/1SAmV3FV7gzSdhtKt4a2e1UhOG5lNyQmV\n3FO7g5R1Hsr3P6eRTP9zmhIRKrmjCgBpOPDkbabaSJb/+W+ZrBUquaP2B6m/rsOvNPeYmNNI\n5pAk+7xgpVDJ/VQASP0VHcXkvEZW/CncpuSFSu6lIkBS1SbHztWbHkGoZET7gDS9s6C2wbQh\n+6pUtoe7HDxRyUK0E0g18x0G9gbWlprry2y6qk1UsgDtNLS7V4r3DgN7A3NL1fVlNl3TJipZ\ngPY6R2LfWJ91t3+3DWPYw1zf3nSnK0yoZBHa7WID202+/TXz82Tc9c1Nb7kDpvVCJUvQflft\n+krx3GRt0NtB95O7vrXtnIC76XqhkgVor4sNwzGLfohjbTDtKMQP/HPXX/51c5pthUoWol1A\nGnykX4RlbjAdDevb7I3g+t6/77aH/ahkKdoYpPl6EbHjZ2/Qb1Xb20mvb/950x+2pf2oZFna\nFqS5SjXVF+YGw2bzuS5xAMNbf/7zprHIxqN6VLIwbQrSXCriAYu9wbTheMJLtIS7/rzdfAze\nniNUshxtCdJUH2r3zd5g3nI8slFHMMz1rb9w+3c+UMnitCFI83kksVzsDeZtblrrL7a/DYff\nLScERSXL03YgmddjSD0/ewNzvXGgLry+74+cTwo28h+VLFBb90icCvEv/Qx2jNvRzh1Y63sS\nbG86KlmeNj5HYp6Acje4zQN06obc9X3bby5UsjjtcdVOcYNxG8aVH+76vs03FypZmvZ4H0lz\ng2kb+pbc9d3NM7dbJ1SyMG19Z8N2/uu2IbX1ds2ikqra+l67M/q/ZuMVzaKSJWnzm1ZP6P9O\nQiVL0vlnEYKgEBXQQgAAAKVJREFUDQSQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhA\nAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhA\nAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhAAAmCBASQIEhA\nAAmCBASQIEhAAAmCBASQIEhA/w+GYvdebjne5AAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"df <- data.long %>% filter(country %in% top.countries) %<>% mutate(country=country %>% factor(levels=c(top.countries)))\n",
"\n",
"### CASES AROUND WORLD\n",
"p <- df%>% filter(country !='World') %>%\n",
" ggplot(aes(x=date, y=count)) + xlab('') + ylab('Count') +\n",
" theme(legend.title=element_blank(),\n",
" legend.text = element_text(size=6),\n",
" legend.key.size=unit(0.6, 'cm'),\n",
" axis.text.x=element_text(angle = 45, hjust=1)) +\n",
" facet_wrap(~type, ncol = 2, scale='free_y')\n",
"# area plot\n",
"plot1 <- p + geom_area(aes(fill=country)) +\n",
" labs(title='Cases around the World - ', max.date.txt)\n",
"\n",
"# line plot and in log scale\n",
"#linetypes <- rep(c('solid','dashed','dotted'), each=8)\n",
"#colors <- rep(c('black','blue','red','green','orange', 'purple', 'yellow', 'grey'), 3)\n",
"plot2 <- p + geom_line(aes(color=country, linetype=country)) +\n",
" scale_linetype_manual(values = linetypes) +\n",
" scale_color_manual(values = colors) +\n",
" labs(title =paste0('Cases around the world - Log Scale -', max.date.txt)) +\n",
" scale_y_continuous(trans = 'log10')\n",
"grid.arrange(plot1, plot2, ncol=1)\n",
"\n",
"\n",
"# Plot: excluding China\n",
"p <- df%>% filter(!(country %in% c('World', 'China'))) %>%\n",
" ggplot(aes(x=date, y=count)) + xlab('') + ylab('Count') +\n",
" theme(legend.title=element_blank(),\n",
" legend.text = element_text(size=6),\n",
" legend.key.size=unit(0.6, 'cm'),\n",
" axis.text.x=element_text(angle = 45, hjust=1)) +\n",
" facet_wrap(~type, ncol = 2, scale='free_y')\n",
"p + geom_area(aes(fill=country)) +\n",
" labs(title=paste0('Cases worlwide (excl. China) - ', max.date.txt))\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning message:\n",
"\"Removed 36 row(s) containing missing values (geom_path).\""
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAARVBMVEUAAAAAujgaGhozMzNN\nTU1hnP9oaGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enr6+vw8PDy8vL4dm3/\n//9CWHaWAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2di6KjKLOFs/OHnpmeS2bs\ng+//qGcr96ugqAVZa6Z3TKUClPAJKpLHDEHQYT3uLgAEjSCABEENBJAgqIEAEgQ1EECCoAYC\nSBDUQAAJghoIIEFQAx0G6d2ruo+g/zoYKQKA1G0E/dfBSBEApG4j6L8ORooAIHUbQf91MFIE\nAKnbCPqvg5EiAEjdRtB/HYwUAUDqNoL+62CkCABStxH0XwcjRQCQuo2g/zoYKQKA1G0E/dfB\nSBEApG4j6L8ORoqAIkhP6+X5rROyeJ8I0jP7tp3OqYPUDj8jjIYRPM9rKDl1A9LTet9YZ4L0\ndN+eo1Pq4MQdHqpdBE/r75XqBaSnY2grgBTRmTs8VLMInt7rZeoMpFN0IkhimCEHG8+zDpcn\ngvSWUawbKgxjaqXmIK3berc/VYn9SIQx+OYOdQPSiQPfE0FyRqV9gaR3uKFHvz51WI10Bki6\nvGthzR//k88CaX05iaWzQbK2WzdAobPq4GmAsYZMT8/UQm1BepqOxilsJJJmtdITSO8zGuH7\nCpB0zfYF0ttviHYYhEF660HMMwFSiBpAOq7TQbJGFM8zQrgIJBNGHyDZJvePN8RrUSu9gBQg\n1VBng+Qe+DoBydv13jmS5dFE14IUDPqGB8kKtXndGV0B0rM7kNxd/3TCoAuSGku/I7i4R7TP\nAsm5eNTjzAZ90fWM5qd0Th2oHW5f/ibfI72tmQ1P/2KJdWx4RhA7JOogXaFLI+gHJKWTDl+O\n7m5FAKmFAFJWAKlEAOlSkM4ZnQKkY2pRKwAJj1EQ0EgRAKRuI+i/DkaKACB1G0H/dTBSBACp\n2wj6r4ORIgBI3UbQfx2MFAFA6jaC/utgpAiKQHqJv9+yX4UmV/77wLDpUOJSkMimrfsIiNVB\nrLD9R7ARVR1Ikh/5x7yhswsAUlXaAKks0YRtL0ivGSBVZg6QMsauImjaIwGk2swBUsbYVQSX\ngPS/RSXfPya+/vHlfaLeud+6QywsQqosCTvPf+tGhTt/zhWXYARp2WEZY/HXO+iReOw7XHxi\n/+HOlyLfcpM+KwKmLbpA0Qi8ElsePPmticbxPLrfuf8NyhFEDNwKyxhHGtrtAYlvViJAyhmq\nQOJ2qSfHj2oEEcOHgmTQAUj3gcQB0gggcYB0J0jcAykkiW4EEQNAWg3crUgJUlC3t4AUO18D\nSNOngnTbzAaAFM+MDEjmvSe6EUQMV4CUU23xW4E0cYB0N0h8AkjDgCQCJwQSZ6UgcYAEkGiD\ntH5wO0hMWQBSPCWARAIkVY2rgSBI7ChI0Vqk0Ax9kGyeJmuvA6QeQJqIg8T290jqMhjVZihb\nHN8EiWwEEcPdIJ2vzEw1bs304tz5aA6n310kpv/KaXc8Nacubuey2Kmv3S85KY3rncxnU+zZ\neiUbQUQ81mQaz7XLqfY40LJHUgfDxcB1BzBZPZLfJV3QI02iR2KTPkmq7JHUoZ3w8Vz3QNke\niccP6CQiCA18GdZ85NBuckFijFtfIQRSdJbFNkiUmyFAUlujgcS+z+yZ2Q+dgGTXWocgTR8A\nUngpcopHMARIjK1DuwAkPt0LEmeiMB8Ckh6Sai+6EYSGTwaJicpbWy5AahfBpgtAUltDgMQE\nSGpODimQBEJpkNzBkJMIQLoRJJecsAF5X9wD0uslZ6u+nFmrtcVvCdLSXEVjncV7gNQkgk0X\nrk7DDUHmtl2fIH0X+iKQBE2z/QjFvSCxFSXmGKyJrIRAijSocUDiE0CqBsl7FulOkJg8CeHm\nKwCpUQSbLiYkPhpITpM5FSSXo5tAYurKchIkBpB2R7DpApDU1j6Q9HN9AqZrluOKzdJg+jPu\nWfXCXIzfNUeF69lBXPyNxcAT9lmXmvIEG2dq1uxNr+FdThHSYXDHWBzBDpD0n1W1x4HqYwkP\nXdisP+PWV3SPtF4SZ3f1SN/9UFGPpLtTL5HueyQVFuUIAsP1PZK3VVv860D6/pABpD0RbLoA\nJLW1C6RXbLO2+A1AYtqQBIlNBEFyqoh3DBIDSGrrAEj3D+3KQFpvMzH3mwCpzAEgKePJIF25\nilAAEpsqQNJXw5Wf3r4VJD4PBZIsrNrZAKkEpKuX4/JBYpaHC9LSbgVIshmr+Xe3grSWYBdI\n0Vok0AwZQNJbu0CKqrb4R0FitkcEpPU/DdLE3L1xFUjqNhf7KJD0ME8H0ilIXBuHBYk5HnmQ\nJgkSM2dKfYDkNchEZgBpdwQRA0AyBjFhiKuHzkVTXR/5s5K+AKSJ7QRJnawDpJMjiBg+DCTm\nesRBYg5IEwdItQ6tQKIaQcRwO0iny58E5H7oTOhg89IBOfOHxKwP63sXzFrhsyrDkrE1d8Z2\n4XM4Rcj5EbzUDKLbxdb/nSlC5sWdPkQ0gpicKUI7Jjl11SOxwIP7PZKzlBA33ZL6onXd4bQI\nuF4bku/okfgU9Ej2YfH+4zkTZ57okaZuh3Z7QZquBmkGSJPTIuMpUQNp4p8BEgs9fJCY88X7\nQFJbVSBxgHRNBDHDp4NkG3yQxC4hA5JdK3GQbIjIgiTXGQNI69aYIE2sI5C8dtYXSHxokPjY\nILGIRyFI+tSJDkh+O8uAlFiRlSZIJqyOQdJ7/hSQ7FWESILkPTYxdw2S9TH3/PwALm2G654E\nSGprF0jWyx2PUewCyZ7Fqm1iszOQuJ8ZQNoXQdwAkCxDdyBZf/oEiQGkapBe9usNILGYhwfS\nBJCaRJB2ETtSgcQA0g6Q1CmSBunaVYSC6UH2h+odDz6Uf1j0C+eIm3V07ClCdum4Wzr1qTc9\nyJ6GQ+Rnx+SvqMlYGAumCLkzomgUukQ6DHspoYpJTpU90uu2HomlPbQh2iOJP8y2ic0LIqjo\nkbh9OI/0SJxgj8TGH9rNpRHUL1kMkLYcykCarNItf7huhSwKknwHkA5GkDB8Ckgs46EN3YDE\n1WkfFy+TBGmtRTapX9mYVYukBtJS8lkt1SSLGAGJAaQ4Q52BpL5ugWR9fhFIIv8ESOvD8GIV\n81l3RXIuG5vkj3muP+qpf9nz3maoqqEQpGA5tPsjSBmuBcm92NAFSDIRiiAxRZGcuiYXtZTf\nWxZLYqukm9imBZLqdLgbohqiAqQoSXJGwy0zG46CpB8/Nx9TAElYJCWT+Z0a8ZSvGZzKEygu\nyXMDuAkkJjdEGaMgBesKukl/KEhx1RYfIE0SJLVWlxi8yQiYdVoUAYnf3AyLQBI21bVmkqYO\nEp8AkudEHKTJm3Fjg8Q7AIm5IDEDUqRPogyS6viHBYnlPLShBKRwZFRbwJoIZA8TA0kuGSb/\npkDi9ljJ+DkB0AFpLe46UFU/SRohCSD1DhLn9lDjQpDYbpC4/oKymQjpgcQUSPqBlpmH50kA\n6R6JuSiFrqkJHVwsfMN5WULNxJn60TOndNyNyP/dLj0hyPrNLvXu3kk3TL/KPcnWWMRMIcaW\nIq4/92avJFRYeTdL72Freaea/f0xPZI4dtozyK+IQCybHOmRnID4xL0IRFfkHQ45d2wX1oEy\n6FIzFYHcq0ws+MLk6pw6VFFa53lLmj3Sumtlj8SnO3qk2uLfB5K8J6M/vg4k8ctoJSDpcyIe\nSdiDixhI4slZefXeBSkxdZ8wSOpaJECagv3E5PU//fF9IHHzm4O63Aok+ZIGKQyADkjqDqw+\nt5tV0LGHyeiBNAEk6ZoBaboTpLWC1H3+xbQFUixhkiCt1xqWrmi2iw+QBgaJu7bLQBJT0hqA\n5NnuBUlGIH86xwdJf4trkpiT0l0RpAwGJP0zxAAp4nQzSGoWqqoeDyTrRqtTb3RB+j4XqgRJ\nz4LqCiQGkMiAJG+3OCAxP8beQZqYA5L5FneM/P5ptwnDlSDZk1Yvnv2dvqfnGNIgqUua14Ok\nzsnV4xGiQ0qCtJEwFZAUOJOamSojioJkLrKssUfuiVMFiZ0Bkn584uWYa4t/Kkjp4/ltIMnL\nWGLOTOxpCFm6QUGabKucr3Hr/PWEwQWJAaSU010gyUYk58yYZ926B0l56H42Vlh3wBrUAUWQ\nlmlOTB7t2HnnSC+fI4BUCJIe1g0HkrwFOxRIYtIgm8ofTdwBkj5FumQ5roqpdrmJUTf9ehw3\ns7Zyv8LXyapVLLLJxOZGBNaaZDSlpgZ+hyNnEXIxf/CcuXY3PGrujqo3EqHcI3HzUpYIvR7J\nqgbdAzFW0CM5O4J0j7TeW1Y2flqP9Ao2AFIeJHNjRYDEU9/pFiTvfSoZc+WOOEguO+eA9Ips\n1Rb/s0Hiye/0ChL33m8lbFcSPZDEzFvLfgpIL/O3Q5C4Z7smAoAU2sxOoAaSuLR6NkjWr1Fc\nuIpQI5DC+dQXg+TcmfxskMwWLZBYsK7HKSC97vmhMTERoDAR6iBVJUKvGY4NEos1orMuf4eq\nLf6HghS/5Z9NhF4zHBokFm9EMZI+GqSbz5EAUsRGCKQlNoAEkOrSbgBSuMsB0oeA5NuuBWnz\nOwCppoDNQWJTohGx4PT2JJDOFl9Wki93pibuvBzU16omSe1SrB7o7fIdYt7iaPZH3g8tptRB\nj+Q/c5BJhGyPVDnOcG1fSq7fdXWgDEP2SGZtqe0eKahNgHQVSPsNXw4/ET8aIGXSSBgJgeQt\n0CZefJCs1Z+6BontaobbtrsrMWkw+FBrhsdACo8M94O0kYYPUvAMTKcgfUU94ol0BtJXrAMi\nBlK+2SVAiuBjPr27DgpAmszYTs/d7xmkr6WtaZLGAOnLpqc+AuIgxcalnuPdIG0tqTNZIPEx\nQPqaRJWkxjyEQCoqX+7cp9RGFyQTHbEIPEMZSMtv1EzrD+yoH/WNzV/fAdLFc+0kSEax4xwl\nkL7yLokOaAiQqA9OPUNpj8SY9WO+zhLyR0C6+jGKBSQfnNmvMTogrWPQ2e9yglY2GEipcRyx\nCDxDEUhyXCfFU6tOkAdpveUcgCRfv1wlkon7nAfSJMehU6Z0nYPk7fjUJUZqEbjafDhnUiAZ\neRPNegKpaCQnDH71hi349B4pcWqww7Bpux6kLDjDgpRrUm1AclYRSjTimFiVqgvYVBVhCd1b\n3Lha1QixUu9qTrZa1ij5HmmnYdvWfQQzrQj665FKItiICiABpHxGACltA0gAqThzgJS2nQMS\nBEEACYKa6PDMBgiCOnhCFoJ6EECCoAYCSBDUQAAJghoIIEFQAwEkCGoggARBDXQYpHev6j6C\n/utgpAgAUrcR9F8HI0UAkLqNoP86GCkCgNRtBP3XwUgRAKRuI+i/DkaKACB1G0H/dTBSBACp\n2wj6r4ORIgBI3UbQfx2MFAFA6jaC/utgpAgAUrcR9F8HI0UAkLqNoP86GCkCWiA9v7W+qvdN\nU3fVOIKnUJvEinRiM7wojB0RPJ0XbzPh9UwHdDRQmiAZiK6oyNYgtUmmQgDJMya8csEMCpJ+\nAUgFAkieMe6VjWVIkJzuWoySnmbz3XrgdBZIz7VnfaoAvNI3jOJckOJhtNUhkEwbEYW09rAN\n0tP31w7WqxVjXaDkQdIU2Zttj5SngaSrL1L6llGcDFIsjMY6BpLVRt7uHn5aXjF/cYywXs3n\nlYGSB0kF5zU9yiA99ZFNmzyA3l40B3UySMEbaiCZVx8k46U6p8ixLPU6PkiNx3atQfI25HhD\nWjRIDS/tXQKSG0ZjNQXpGRbV7VULX4cHqfXo4lyQrHFE0CM10hUgeWE0VlOQbIenv/1RIKV3\n0il1eSpI0Vp6nxTAeSCdtvOFLgEpekwbHCSn94mA1M/QTpU2XVvHdRFItIZ271QbibUThzrf\nIVVFA4D0dmc2uPHblzWb6FSQVGnt0j/f1msDXQBSEEZb7Yog1kYyl7/Fa6whBZe/3/WBUgXp\nSnUfQf91cF8E7Q9mAKnbCPqvg1siaNq7AiSARED3RNDyNgpAAkgENFIEAKnbCPqvg5EiAEjd\nRtB/HYwUAUDqNoL+62CkCABStxH0XwcjRQCQuo2g/zoYKYIikF7i77fsV6HJlf8+MGw6lLgU\nJLJp6z4CYnUQK2z/EWxEVQeS5Ef+MW/o7AKAVJU2QCpLNGHbC9JrBkiVmQOkjLGrCJr2SACp\nNnOAlDF2FcElIP1vUcn3P1bc3ubyZZVrcr6jPnesF4m5mr1iRItkAuKezx0RlEgVl/sFthy4\nF9Zsqi0aF3qkMyPg5d9xDXz9d/3x/MuxMFUUZeCx7/BJFZZ7PndEUOYiS+oWeHY/XjfmyQ5L\n/OGz+QpAIg0SYxNA2hdBmcsBkDjOkVwbXZC+MQJIeyMoc6kDiWsLB0iBjSxITP4DSHsiKHPZ\nDxJPRACQqIHE1B8eq1mAVOawEyRufbxuSJC4/t5xkDCzoTzzAyAx/Rcg7YmgzEWVlE+7QGJh\nBIfn2l29C0oT6Q8kccVZvANIeyMoc8mDxF1HbhmWYR7THAGkiR5IzH4HkPZGUOZigeTs2m2Q\nFox2D+0AUmXmAGnSxkAdgmS9Z1M8AoBEBCQWvLsDJE0SQDKO5q0cegMkoiBZJ0fKMlEAibMJ\nIJl3uo5OAQnKqGyyGYubNie5naEv+w1fi7E1eY5H/mTcSUiVlHuF5Nbf2fisilSTJfRIt/dI\nLOKxdgWcRo/ELUPsO26PxEftkawhwxVDO+69B0ib3xkGJB6AxPN1AJAAUj6jGpBYzIMGSNPQ\nIPF5GySmHexzWIAEkLYcjoNknPhEHiTnHlEIEtMgOdeCABJBkMIrQcrqgBRJCSDlDG1AWvYA\nn/ybEwCJHEgsckl1tU/dgKTa3oAgsekMkF4vOVv15cxa9UrLfZIAUu47zDeoLzKAtDOCIpci\nkOTzLNznqEWP9JrtRygAUiKjUpCiV4LWL7og8VhK9EAS5+6jgCTmdbDvdx5HDUDynkUKd4H1\nOPtJu6A0EYCUNuwFiX8GSPZlupmJmwCJlI6A5HIEkE4BaWJOM7wRJJW13+r8GPmgIHEWcHQc\nJP1cn4ApshwXn+9aSIqitvZDZtIJk7tSJXTVLnWmCC0F3CyGWaKK6z8ZdyJSU3/cpdCsSU6q\nbjgrC2IHSPrPKpdV0SNFr5I2OpaUJkKhR4rd/bEN8Zt8k/gIPdK+CMpc+GTWY7AcTI+kbu85\nMQcpHQHJ23KzAEi2BSD1BpJ+cETflTgDpFds083CAYmfsgsKE+kApMTd8lUAaW8EZS4KpOk+\nkDaGdsvuA0jiBSB1B5LsB8zqJueClFxFSO5O63I8QEp+hyJIiqTPBIldCVJ2OS6AZFsAUqcg\nWRNOTrnYEJObBUCyLXmQUvO3VgGk3REUuSRAks/4A6QKG0CKGj4NJMchBlLIEUACSNsOAIkC\nSGrGFUBa1T1I65TNzwPJnrl1GUiOxPwgHi7G8pnK7oD8ojR3TREKlhGy19kZcIqQIyaXb7Kr\nhhfG0L5HEoel9R0/41hSmAjxHslfyI5wj2RGFqP3SOpBPmcu8W1DO4BUBNJGIgBpdwRFLn2A\nxADSqoMgOU0y9ANIOcMBkNwpkLeCJEgCSEkXtpUIQNodQZFLDyDJNSMA0ieC5JUaIB0EaX1U\nmgGklAtAOi+CIpcYSPLS9+kg2asI5UBSl+IZQEq6VIOkt7sCKdYKyYPkTYE8ASTrJfEYxQIS\nUzeHRZEAUsxlRJDUCdJgIEV0BUjy9ghfH+0ASCmXTkCaPggkcWePezf4TgDpZb+mQdLlXPYq\nA0hRF7aZCEDaHUGRSwQkESJzy3wGSOoUSYMUrCLE9cQXOVeI5efBjK7k7JLt3eLPzbltGaHy\nKUJmkpD5hOwcoTAUJu07y1zZI72yPRLXQxbZI01TsCoYeqSJdI8ku6QDPZJ2ot0j+b+CJnuk\n6fQeSdFUB1JmuddkUQFSFiS9BZAyhuFAmj2SANJ6cPkAkGym4plRAompEM8/R6oBaeIAKQlS\n7GImQGoXQYnLzSC5FxtCkJi9eyVI+QfYAFI8EQcku0kCpCIHwiDpGQ3pmQ0+SOJ/gOS6sJJE\nANL+CEpc7gQpLqd0UZDcK3cACSDpLYAU3wXM2b1ix87epTuAVAQSZymQdKIAKWcASKODxIoS\n6QYkXcZRQOLpL4XGc0CyT6IlSFxWfOq3UnfsgsJEAFLaUA6SKQZAihkbgqTEmDMfSEy14GrG\nxWdOFYpONinbFevvW6nvOz/edvasG28ZITvv2BQh5zPnd+ZI/+RcEApL2EvVskfiFqymR5rc\nLgk9UlEisR5J9AzX90i6YtEj+cbLQJoUSOYHZ47ugsJEqILEfEM8kT5BEqsL9AiSOi2hDJLb\nJQGkokTuA0mQZEBiACmd0jkg2XnoZqBAKm1BRS4fCtLaoC8HySwZAJB847UgOSQBpKJEVpBm\nt0neAhKbdCvjE0DyjOeDpEtkQCq7E1nk0i9IpSPcCEhy7iJAKnGgDJI91y71G7JxkGySAFJR\nIkmQzNzF60CSSwYMChJbNV0Gkp71/XLMqTxiIJU8iLO5C8oM27ZbQCq/C7DWrG6SbG2ja9M0\nSVwCkvo7+2T4MfJuQbIdiINkdUkAqSyRZVkoCdK6ttly1t8BSJapE5DcSTdXnSO9fI7qQCp4\nxjpmGQakiplSjKkl1OVoblnejNmLRV0CElcFqADJ+guQMiDpU6RgFSFb7lwLvf1Rc4X8WSg1\niyqtvkxqTYxftS6PNUlI/MwWF9UWnfPDHVfrF+Zo/9icbp4sYa9VHUgbT8jasKqfDHR7pO2V\nEWOWTnsk/8y86rEseY5k0uDrBXDrlxjnsyL4MhbVI631VtcjrX/mSJdEokcSs9em4MGEi3qk\nV7BRCJJF0uayQqOClF/BMw6SlQTnnt+lIE1sTJCCgxu/AqRXZCuVRwqk2UcJIEUN4p4RDZCW\nwsxsCyTzDiCVcLRraOe+31hdeUyQKpeuCEHy/a4AaXJBYqOBFLbEC0CyFtFP/axLBiS1k/2B\n6QAgsaiagOQZpmua4ddi+foyufJ1JLHcnd0NUngr4E6Q2I0gvQp+H6kUJPtHvQcAKZaND1Lt\n8n43g7Rg9DU5IC0hMJ8H62KI+qN++HSpZB3BhT+VVuIiQYoc3C45R4oplUcIkjxG6VgkTIOC\n5AyD9oLkG6aLmuHX12IxIE3qZyYKQGLyMClm6Xmd9GUR5F1YRyCFFR82jnUm12eAVL0E+q0g\nScuXAYlvgCSjFXPzJv07WeICPjdd1CW3lDdd2BpIdBHgLkCSQwTzlttjvHThuwXJzIc8DlLg\nd0Ez/DI90uz/JoIDkmiZujK5HsjzSd/6EjRxa18ApL0gTdwHaQnHZ6kzkMJ7zAYk4RA5WvQB\n0vRlzmxCkDg3HIlLEYY7DZJ33ZHbLfVmkKIHt05AWn+zl+u7E6q1bPzcYJcgTYz7h++aXGiA\npH7AT3Kjx27TSpZsdcJkV2ESJO9W1E0giasmQb3Nk1O6RLpTvA6aLccVKDFnSc7ekhOzzBw8\nbzmvjpQq9jdIB1IlMkmNm4l3qs5URanJataPNBpXzkOrmsh2e2hiGmP8s72Fu7pHUu/lock9\naZJnFOP0SF+OoSoXIj0St35U1nQnzGzpjihy63Xybshe9Yzvlou4nhhP9LYeKZlHHiRJEQ8r\nwL+0E4umC5Am9jUCSPLObBQku5riIDnv1Fheud4KUiJReiAlDC5I36PscBaJOJ7n7tnSAukr\nquUDfYrRM0ju5LtJXGydgqNdCUjuncS7QJJX6A+AZA6QdEAyj4HaLmrcULry0L0gRbP5UpMD\nihItBylSibVp14K0dEoGpPV/xmMFlooeVrRP9yCZgQYhkNaenjtTSFaQ9I0+FhnqEQMpVYlf\n02SdYVTm4oAUNsnpUpC+S6BAUk9LREHyixiP4NpDQWjYDZIqPqmh3WQ/iy4XzpB3wOfJe7xq\ncUlMDE1lu207H6S1aRUmGgUphOeeod006cOwvlHkg+SXM5Xw/T2SaDVZkEQgeucHB4BIBDtA\nKpu0urkLIpPx1FmTfw3CcnEHDPF511mF+2B3BELsK1WJok7sJRBKc5Hh0WqGNifq+VKL9Vhh\n+wTpOxjNzeyM5IKkj4CUeB4p2nfndoELUvyEPTXWrhsY2fbI3cCNpA6C5D7eU5KL2X/UmqFV\nBzw9issnTBqkoPVuRXUCSE4epVgE6MlZxnKkF4mGrwPAmedncvDYfprcgX0zkJKVqM8vvmQd\nTfrwVrArYkWZ7m+GqvDbiaaMd0fggKT3udr1113+LnxCNmUw7+OT8ZYAuX4TSDvFPrS8eOjg\nzfS7DiTdyVg1VtASaDbD8kRTxpsjYLFLN1962HAHSNnluHaq2RwSHi4cVZJsVTfKOp7Y1JEK\n6qBGYtJTqjFcN0WoWY+UZL7+aLjjeH7FApGHDJu2mVYEvfRIFYkmbNSGdsmiAqQiWwfNsP8I\nABJAShsAUlmiCds5IEEQBJAgqIkOz2yAIOjMJ2Qh6IMEkCCogQASBDUQQIKgBgJIENRAAAmC\nGugwSO9e1X0E/dfBSBEApG4j6L8ORooAIHUbQf91MFIEAKnbCPqvg5EiAEjdRtB/HYwUAUDq\nNoL+62CkCABStxH0XwcjRQCQuo2g/zoYKQKA1G0E/dfBSBEApG4j6L8ORooAIHUbQf91MFIE\nAKnbCPqvg5EiuA+k57d8U8690r6pxpX4VPLMbVKPqWUzDMv+jG621dEIns6LZy0wZuyFIgDS\nMx5GMjDqICXK0gtIzou3eZoOgyQK6ZX6s0CKH0wAUoUA0jM4HH8sSHbPtOyWdXyhhxnqZTn0\neO/FN6T92D7Ym0Ao6wD5tIq9vlmLHBxBj+gkkPRO1vv36cYkojmeZ1OQnqpcT6d5FDWfyElG\nfQS3gfS0+uWn+asi0oeWp+zBn/H3+2v0fJB0e7SOFMbtsNqD5Ox0s3+DXZ887lfqOEhvv2m8\n39nmEms+iZOMygjuvGr3NCHp6rLHGPbesQmL2qt1PkjWa7DdQE1BMqOA99upi2Dz6H63dBJI\n79CWaz5HIqEB0ttUUxykpzUg0pbeQApCIQmSfrFK2gNIqnz+/vVs2eZzYJxKCyQRvQ2S/deO\n+J2o1T26CKSnqVxhb8XRWSC93TIR8V8AACAASURBVE3qIL3TZwSuV675nHCO9OvP3x+Px+9/\n/joZJLvmSkHK9tnVugikt1OpAMnWtSBlm8/OcJIg/Xwo/TwZJL9KvMOF/an96vfNRC82OEMK\nd7sHkJ7+/g5iogNS2CSs7ZLmcyScBEjv1+vnP/99b/z3z8/H6z2XaF8B1hic+2mqxUUvf6vP\nn097zxC9/B0UU8bldrPH1RQkM7Mhevk7GtNhtQHpbTeVZ3BJfLv5NL/8/c/rL+vdX69/TgXp\nbt0UAU2Q0mpX3lD9t6I4SH94jPjvAVIDdQRSs54npf5bURykXbo7lN26JYI2MwKEzq+DA2Oe\nIvXfirIg/fl6OGM8gERT/dfBSBGEIP25XrT7EyBRV/91MFIEIUivv+flugNAoq7+62CkCGyQ\nfqyX6R7L37+Lz53uDmW3uo+g/zoYKQIbmMfjx9/qniyGduTVfx2MFIEN0q9vhl5//VouNhRz\n1O0uAEj3a6QI3CHcr5/fEP0M5tmJE6bXt+xXocmV/z4wbDqUuBQksmnrPgJidRArbP8RbESV\nAmleJjQ8Hh5Kkh/5x7yhswsAUlXaAKks0YRtGyRxB+nvH4/H7/9aHM0AqTJzgJQxdhXBLpD0\nHaR/vlFyuiSAVJc5QMoYu4pgF0jWHaT37wUg/W/RfKl4uM0X6fdcveVKlueFBd0lFmixki+2\nll0R+h1JRfc0j0h/Q8XmhGjJufyduoNEp0filoF7Hnyy/3D5LW48eXc9Elv+8oTfTCsCUyd6\nd/ONgzyhCJY97e7okLVJ+CxRKdc4SMk7SACpXQTliQCkjcyyhiMgaWwmwQznykWCpD3jIM2p\nO0gAqV0E5Yl0DJIsd5cgaYZ8H10ZfBOklABSuwjKEwFIG5llDZURcCYLz5I+BiRTI3GQkg/2\nAaR2EZQnApA2MssadoLE0j5c91pbICUfNaczswEgkWyG+v1ngBSL4PDiJ7XFB0iliQCkjcyy\nhl0gMZ+jnSDtWY6rtvgAqTSRbxsPr8qSbIb6vSSoT5BCjPaDVL9AZG3xAVJpIgBpI7OsYQ9I\nQRoHQKpWbfFvAYmrzQ5B4h2BxPoF6bvs3HfwfM4F6VpFpgi57/UfblnlTA+6M1ZS4kwXvgup\nOU3ypaOSf5eZbRV3nUaU+rDjHsnukubJus4/WI/kju1IHs/V+357pO+BG88X1rrXNNjQDiCR\niiAC0rTRNilFAJCUQYxxAdKNILFJ1kGPIG0V9hNBEmeFIUjOUINQJcYTWWy9giTPy4cDSVTF\nrK/vDQmSvqrCAFLecBJIyxXkdXfrqhgUJHOdPAPSX78/HvNv//pmgNQogvJEegNp2eufABJj\nBUO7Xz+WWQ3z41E2P4gQSExf52eJoZ13FYlQJcYT6Qok9fDBuuuHBonFI/BA+uPx85ui+e/H\nbwExr5ecrfpyZq3WFv8SkLi5sACQrgFJvh8apKVhsSkegQfSsuiJ+hfTa7YfoSADkniiUdSe\nGKkDpIyhfQT6MC3mfo4LEnONe0HynkUiAhKTh0OmrrwCpLzhEpDWHT8aSMwzJkGSQ7ufj/iv\n9YUdEgGQdGe7jmF9kNaG2C1Ia0j0QTLjncFB4p4xCdKvl3iI4vVfiiPrFOn65bh47B3T79k6\nOe3bYk/z4mrSV1dzv6TWkEgX2ywbJt6KqXbMnfDYgQpaB88FFAzh/vzxePwIl/9e9XL/rKo9\nDhw6lnDHYF3U1z3S+m6oHsmblUzteM7c92P3SFNxj5TXK7JVW/wrQJrYSCC5z8lQa4YAqR6k\nV2yztvjngiSrdSCQ5BXXiB+NZgiQoiCpq3Uv75KCRQ/pod2QIPH4Qms0miFACkF6PSxlQbpr\nFaEISNYFSbN4xUAgTQApYqAN0l8WR/bCXC5Idy7H9XkgrbUHkPoCaU7PaEirtvjngqRvLbkg\niVrtFiT7LIlaM/wgkPQtvQKQ6lVbfIBUmghAShvog/Qzc45EH6QJIJWkDZBCQ2OQfuYuNgCk\n4xFUJAKQ0gbyIL0e//72+O/Xb+XPI10qHr5lzls9a8idIiTnq3Q0Y0WKy5KzTc+7xIK3fU4R\nKilrrgWFFxv+fPwz/4o8j5RQ7XGgYY80cX1AHLpHcrokasfzUXqkaWvtsKmqR/oG6Z/l0ncX\nQ7sPAslvr+sWiQi8gskZ+B8P0u+Pv/97/Jjf44DEABJAKjG0BWkh6LflWkP8eaT+QGKDgKQb\nLLVmGAdJ1MAHgzT/82N5uq/4R10AUmUEFYkMAJKusHhKNCKQagxStWqLfy1IbJShnRup2KIQ\nQXAVBCC5ivy4ub2KEEDaGUFFIgApbSAO0vvH48d6A+nfHxHAXtYLiccorMvCsxOoBokNc7Fh\ncm49iy0KEcRAYlMaJE4uAlOyZiC91ykN/353R4/Hj65B4mwQkMQCSACpL5B+f/xc1w/67fGI\njezs1z5AMisKyeZoX0WiVInRRHyQrEcYxacUIgBIEZAej1/zr8fjt8eP2NLf+hRJg3TzKkLu\n8jXiY+kgV95ZPmXWFKGupqwIcWumDcV5QkGZ5EpOzPoBRVt0a6BkilDGxwVp/ZO49q0AItMj\nhY+7eT2StaLQED3SJJaP0zuBQgTj9EjJKjBSP+e73SOtf/5JY0cJpMiSIDZITC7rDpAogeSe\np5KIIJfGMZAyHPUDErNrtmeQ1g1NEov+yFVt2gCpLFHf1gYkakO7KpAkTL2DNNnLRZJohgBp\nF0juxYZbQWIRj+Dy96KxQJpmgFRUvDNAmopByi7HpWY00JjZAJBINEOAVA9SXIdLewpI07Ag\nmU0SzRAgRUDapcOl3QcSi3kApLK0AVJZooFtOJDUL5Z6HlmQ1r+dgqQuPDoRkGiGAUicAaSO\nQIp7jAwSX68ZkWuG2yA5LAEkGlJTNBKTZcwUIWvCB7OWEKI7QSUlFRDVn0oLaoKLaVtmipBd\n5C5naVkqnCK0S4exP6NHWl/H6pHUC7HjeaRHEhNKoj2SVwckIsilMfrQjiU8BgQpYyPRDAES\nQCJViQOD5F1y/BCQfr46uI8EkNYtChFEQJL2DEj6LgaFCHJpxG0lIPWx9jdAWrcoRJACSX7A\nrTqZPgmkV+zZ2H5A4rajA5J8HgEgFWYOkNK2EpByPZE91+7eSasAad2iEEEIkqoj8c4Bia+1\nQWy2YC6NI0O7X0mO1B/3d5oPl7YeJJbyAEhlad8HEpsYI/ZEVS6N/SDNv//2H0DKGwCSZdgA\naebcnt+0rglO7ImqXBo7QSqY/f3yOeoAJG4+A0ilme8GaYqBpH4OezVygCRA0qdIN6wixMKl\ng+yP9RQOay6HWFDIWY4HaqawLqwlj5jY7fy72sSqTqt3bi2eflV3Q/bmJ2T1OnY1PZL6Dnqk\nmsxb9EjfJ0QrRMst2vUA6D8TQiKCXBoHzpG2QXI3SIE0AaSitK8ESTtYU/P1VyhEkEtjP0hq\nSPfyzoR8fABSzgCQVoqWvwYkPV4YH6TXxjnSy/wFSDkDQFpXDluM5hJddqZabe60QfrL4uiv\nFEf+FfDDpb0KJNcBIOUzajG0W4zOY31+SiQiyKVxfGgX0ev+30fS44R9IDGAVJz5YZDEy8eC\nVK/Dpb0MJKbuzcqvkKrETkFioQNAWvUzfx+pX5CY+Rk5+RVSlQiQqnInDxLtxyjKQbKd1qtH\nkiaAVJg5QErbSkB6Pf797fHfr98e74FAshbvsiueVCUCpKrcyYP03RP9+fhn/vX4bSCQLJt1\nW4NWJY4KUpAwtQiyaRwC6Z/l0nf50O5K8a3frIvO4uJbDtBuRSqEOy8fIw+Y3x9///f4sfws\nc2kCh7E/vUeyjThHKsx8f48k9eE90kLQb8u1hj8AUsoAkIwhDVLaSCuCbBr7QZr/+THPf6R+\nRhYgFTkApKyRVgTZNCK2r1X64yRI1Tpc2pYgxb9l2QBSYeYAKWJTCJX0SAAJIJW57Acpcjyv\nzf1ykNx+yHycBumv35fTpH9JgsQ2PWI2gEQHJKc9koggm8ZCvTuW8xyTIP36sc5qeORuyN43\nabUBSJGHYWoLCJCMoRCkry+rPdKKIPk+RlDgmATpj8fP5R7S35kbsjc+j3QMpK/E4bC2gADJ\nGLZAKj2e1+Z+IkhfTpk3+tkkSMv9I/VvCJC+vhJHQ4ogLWWUNfjly69hGs0wDpIpNf1DgVG0\nCxoUpKB5bSqdNKlKXA1fCiVVbtspPERSaIbxGsklTCKCeKlLBwUVQ7ufmRuyBqRzl+Py48yt\nw9WtnAgvzSwU26Ozy9xCYagnZOJfbJDrNrxS663e2iPVJLJp6z6CmVYEG8fumK2DCPb2SPP8\n54/H48fP5ArgAIlMBB00w/4j2A/SpgDSdkYAKWPsKoLrQIIgyAfp15/L1O/fI2txGQEkCArk\ngPSPWiLylXvS3J3ZAEGQC9J/j8cfyyS79++P9O+NQRAUygbJ3D36o+KBJAiCvLW/1d2j5XFz\nCIKK5f7QWGwTgqBNASQIaiCABEENdBikd6/qPoL+62CkCCp/jBkg0VH/dTBSBACp2wj6r4OR\nIjh8LnR3KLvVfQT918FIEQCkbiPovw5GigAgdRtB/3UwUgQAqdsI+q+DkSIASN1G0H8djBQB\nQOo2gv7rYKQIAFK3EfRfByNFAJC6jaD/OhgpAoDUbQT918FIERAB6fmtbac2eUm1r8SN8rUt\n/rFm+HReSr6QqaDdgbVsRU+hqq8cz5UYSCL+zbiIg/SMF7A1P1rHQargKOX+rErGU1OQnBff\nnPvKEVEDyXnZcmskgFTJUfQLAIkQSHZAsnt+vmU3/TSvotIqu++0zgJJ/xFFfYqSNy/+cZBU\n0zN73NndT8/97bnL78jodkV1Ekh2G1LtRn3gOhwWWZBUzCpQ/f4tbJVH0pxag/S0/sWK/m5b\n/MMg2Ydwa49Hy2m4ykV3aQS+TPmCiFKNaGSQ1HunJiPvG+gSkDzb2349qmMgqYFoyE6inM8o\nakF0NWoKkr7YEEQUPTwMD5IcEGl7/H0DNQZJN0trIKE/OKH4B0HySmWVLjq2k9+iDJK7lQfJ\nalTHRBckfwyUeN9ArUFSjdBqVsHgomHxW11siB6uE+UcBSS7UR0TLZBURIl6ir02UGuQ1N/Y\nAOKE4re6/J0a9zjlzFdQbyA5r8dEDST3WOHXU+S1gdqCZJpgNAR7mw5I8UNUpJxuBQUVY6V4\nWQS+NkCKNaLxQHqbIbm8Qml2grli6bwe11kgBRdZYxdgW6gBSLK4mobwboP+glVBtocT3ZUR\n+HKwt04Bn89kIxoRpBvUfQRX1EEr6OO6oxW1jQggAaQiDQVS0zNUIYAEkAjo6ghazisRAkgA\niYBGigAgdRtB/3UwUgQAqdsI+q+DkSIASN1G0H8djBQBQOo2gv7rYKQIAFK3EfRfByNFUATS\nS/z9lv0qNLny3weGTYcSl4JENm3dR0CsDmKF7T+CjajqQJL8yD/mDZ1dAJCq0gZIZYkmbHtB\nes0AqTJzgJQxdhVB0x4JINVmDpAyxq4iuASk/y0q+f414lJyO/jwjjJti/tbqvxWNLbXdUWS\nBQnsett5bznaBe9OThuSG8bOk7EN1CNxscnFH+46cWGn1yNxbeCuQTgFxguO59zKmlsu3PGZ\nvffc2tZf7K9H4s4fPk/+jnC2RwZJ7ACAlDEApHSiAMkGiU8AKWMASOlEARJAKs4dIKUTBUgA\nqTh3gJRO9HyQqM9ssCsSIGUNACmdqGFo3WgLUk67Sps1ACTLCSDtiaDMBSABpHXrXJA4QPp4\nkMR+AEgpA0BKJ5oAyY71Y0CabJB0SwRIpQ4WSE6+nwOSGNKot9eAREbeXBbumvm1s2zKFZ8i\nlDeeLJEZ92cB5acI+YEQ3d2b4uqv3ghijcY2ZI+0CD1S2rCvR/IOyuiRpuGHdosGAcmqTz8l\ngJQztASJe61rNmeOAAkgJQ0FIPHQAJDGBElccPF3TLcg2VfP1NbdILnXd4YFiU8AaaIPkio3\nPZDc9rMJkmldA4HEABJAShsAUjrREpDYyCD5HAGktCHvwFVxPhokwVEMJMaOgfR6ydmqL2fW\n6q7SZg0AyXYCSPURFLrsA4l9OzL9lR0gCZpm+xEKMrtgIJC45wSQ6iModCkAacHG3RELQ8dB\n8p5FIrMLhgVJjiKsa2IAqcjhLJBWhGauSDoCkssRjV0wKkhs6hAkO46+QWKTD5IA6PBVO/1c\nn4CJ2HJcnqwZY5HpUnRkzVFjs1vK7/dMTly7sPD2bDN/el3gY70PZjf2KGdqJlv/59aOYI6X\nrR0g6T+rdmGfNezrkQKJHomb4yN3/ahEoHukaR0w2Md9Nt3XI/Gppkfik98jBSOASGZnRVDo\nEktUFz7aI8kRXZseydvaU9q8ASBJsRkg7Yqg0GULpKU6JEgOR4dBesU295Q2b2gDEpMgmVNf\ngFTmAJASIJlrdU1A6mNox/oHiU0AaV8EhS4bIK3cfNeJAokZx2YgUVxFyBVAyhgAUjJRHcT5\nIFFdjssR639ox4STqE6AVOnQCqRZg8Qsx6MXG2LaU9q8oQFIrNNzJEYHJDfXzwNJ3TL6Bol9\nLEjrWWLnILEJIO2NoNAFIAGkdQsgZQztQGJMX3pQjh8C0hpzhyDJmV1CAGl/BIUuRSAtRzd2\nBUgExay/3CwORXTOiikWExNS1Bvr9YYpQkGukQWpxp0iJKZriY2lWvRb18vSgD2SPHYw9Egp\nw64eiXs+g/dIejYQW3ojzhzHzxjaDQESU04AqT6CQpcKkJjrCJAA0rYDQFpk5qdycRXIcVRu\nI4OkYgZISQNASiYaBcla7UQ6AiTrK0Qi2AKJTwDpepCsid7fJg6QAFLEAJCSiV4Bkr2KELFd\nYBn0aBYgJQ0AKZnoJSBZL3QfowBIF4Akd+W4INmPHnE7UOkIkKyvEInABmm9hy5Kr53klHAe\nfBEg5QzNQOJTY5Be9itZkMx1ShskDVMvIDHjBJCqIyh0SYNkP3rUHiR1iqRBoriKkJnKYa+/\nQ/k35OwpQstkFLVpWf31fC4qUHqKEA9dh5oiZO3+8IcL55ihtkd6Ee+RrBtn9rOllHskeXQj\n2CM559jfHQ7T9yXVruTWd/w1l9EjbdAEkDZLMypIev8ODpLz6NFHgmTP5JCXuwBSK5DE0ylM\nPTT1ISBNUZD01g6QehjajQISs5xogTRNE0A6DpJ7sYHOLpAGd2qh1QIBUoWDBZLt8jkgOc/w\ntQdJz2igO7Ohb5CWLpQ5NQmQ9kVQ6FIOUvKLu0CKa09p8waARBIkc6cbIJmtIUFyOeoXJOY4\nAaTqCApdEiC5D8MCpF5BMndr7gGJG0scJNltAqQJIK1foRKBD5LnBJBqIyh1oQUSIbHwLZ/J\nTxEy6watv23F/I+vniLEI5vrSjpWiaJThLy5QVR3d148aEaFcQzUI3kdUpc90sSY78TZrT0S\nW2/BOqsWoEcyWx8Ekm6FAKnIwQVJzwmy2tPYIPnrnEQ0Nkg+RwApaSgHSZeGA6SYESCRBSlw\nuhMkUxqAFDUOCFLAEUBKGkpBmgASQAJIaUMZSMweZkZAYgwg7QLJnmtHb9LqICDxwImzyf7g\nQpBsjxAkNgGkQ49R2D8gS2UXjAzSdBNI7g51FqRiA4PE8j6eESDRA8nlxXIiAdLkg7SsLcMA\n0g6QFE0uRzR2QRQkeXLRPUic3QGSvz+LQeL2FwBSBiR9ikRpFaFgZo34rSg5P8j/XSxSksVi\nqV9D4+zSn0nTxYmaxWdcfMxiU4R47BvdiEcaUpHqQKL7hGzYIQU9kjhsmq9QicB0AZxwj2S7\nsGXGkN0jic7e7ZH8EUAkpZMiKHWJJOpfazirR3oFGzR2wfAgMVogMWlwl+cCSNUcAaSsoTFI\n6x2di0EK9mfgApCmvSC9zF+AlDM0B8ms0wWQyhwog2Qtok9v8ZNuQWIFIPErQVLFyrgAJL21\nA6QX6d9HioMkL3ubOxsEQWKmC8iApE/sSYGkLhaPA1Lu1DBi3ANSQjtKu1XUpiBZ5xcAqbh4\nbHv0J0AS8/EA0sggyV92n4iDJA/+WyA5i0aKrftBEkcqgDQOSBGOVpDW5smIg6Q56RIk67EK\nrk1qAyANAZI62JvqJgfSUkIm1kXYAEkumwCQihwAUpFLKUhysCFaK1mQzClHFCQ585oL50ua\nIcu72CCp8zc1wgNIXSs6Q0r94txySszsmWGEJBfbEkqsusXVbw/unQe2q1QZcWuLL6VjYr0u\nd9Uzirt7S/t3ca89EvMUO27oHkleF+u9R1qmOFxxPGesqkeSpZ4ZeqQeQdpKZDyQuLpGpj49\nKQK26WKBJO54AySARAskHnWyQLIu9FMDSf/YqOUFkIiDVBKvD9JypTl2QK/N/S6Q/KZ5Uh2w\nbReApLc+CiT14g79aVRiEUirCIFkDA5Ik57loC6SAqQhQaI/tONxJy1uu5xTB8F93+x39Omb\nbIbWxR/WI0jZKYYR4yGQKExaLQNJNTq6IJljeBlIfDk8qE/pgbS+0SktF8X9b03xZlhRwMLi\n0QeJxPNIHwrSFK/E2twzDmzbxTZYJ6EBSOut2qhOjaDcBSBtxPv1rWmyjt1RPxKVWA2SCE18\nShAkzrkD0sy/Ijo1gnKXIpBi5Y9F0ClI8fCsKLMfuvvglggUSEuJBEhyIxvZt8+5PRLbyr9a\nU3B8ID60S7WX6BfbgJRYjqt0F8e7/TJVl/oOlYRv3OTGeRkW7fd9+ffyI33bO2V3BfTZIxUk\nsmnrPoKZVgQbZxMxWwcRDH6OBJCmLpph/xEAJICUNgCkskQTtnNAgiAIIEFQEx2e2QBB0DBP\nyELQvQJIENRAAAmCGgggQVADASQIaiCABEENdBikd6/qPoL+62CkCABStxH0XwcjRQCQuo2g\n/zoYKQKA1G0E/dfBSBEApG4j6L8ORooAIHUbQf91MFIEAKnbCPqvg5EiAEjdRtB/HYwUAUDq\nNoL+62CkCABStxH0XwcjRQCQuo2g/zoYKQKA1G0E/dfBSBEQAukplPx4/b+dzqjErQKeE0CT\nCHK7fv28RSaeGkfgvFwjmiA5LxmPNgJItp76T86hsVofCsRLi7RKBZAAkqOL971UY5C2jwbN\nRRyk53p0kYMNNeDrZWinim3HYIwNdQJIds/klt4PrUkkp4HkF9QNqGHPRRgksR/eb+fwIt/3\nAJKps7f1xn5tpaYgPa2B0dP6q0r9jIZ2UK1BctrJ0xTaC2h4kPTFBhOjFXNPIL29GMiDtEjv\n++f7GZY68npYp4OkX92KaTc4oAmSflFb9mGyF5C8c145mHjag4pGOqEOnk67c0odeX9YzUFK\nHgH0m6fppVqoC5C88V0vIDlDH29M2gVIehjklDry/rDag2QzY1v0X3us10A9gOT96QikMAby\nINn7flyQdME/DiT7jKkTkPxhhXua3jCvxhcb1r/6jzMciEZBFKTI7nYDUpfzWuRIFSTvYoO8\n6Nrt5e/3+x1eOG6oxs3QOSG1zyjiUVAFKVIH5q8KpFlFkATpYnUfQf91cF8EAKmduo+g/zoA\nSACJgPqvg7siaDMvYxFAAkgENFIEAKnbCPqvg5EiAEjdRtB/HYwUAUDqNoL+62CkCABStxH0\nXwcjRQCQuo2g/zoYKYIikF7i77fsV6HJlf8+MGw6lLgUJLJp6z4CYnUQK2z/EWxEVQeS5Ef+\nMW/o7AKAVJU2QCpLNGHbC9JrBkiVmQOkjLGrCJr2SACpNnOAlDF2FcElIP1vUcn3LxP3ZYzK\n4c7iDSx3n0frYTY1cmdJN8WtRsIjf+LlH6tH4p6NayMPHGhGUGGbaUWg3vPJ2s3Bt/hiUx8T\njcASX2yZVgSQAFI+I4C0KgoS/ziQGNO1KncBzpEKMwdIq1yQ+GeCxNj3P2lbtieAVJ45QFoF\nkL7RWWwrSOwbI4BUlzlAWmVAWv62AamHmQ0mQiZsnMnOCCDVZQ6QVsVA4vsvNuR0uLSngMSk\n7bs74trw/Q4gFWZ+FkgMIHUAksORBGkCSNc2w2VPJ0FinYHEAJK0cYB0bTNkOZDYMkDoCCTm\ngMSnTwOJGRtAihhObIYs1yMtl1G7Bsn8r77SDiRKUlM3mG3i2kR7ZsoQYpk9zZj0oF8RTGpm\n64Sn1ba2JP1/oBF7JGbZuGXjzhdJRlBjI1YHy3s2Jc6RllYpt+j3SKqoorhX9Uh7S5s2HAWJ\n2TYFEmcAqSbzXc1Q32jwQXJaJnWQmG37YJBYxAaQajNvCpLdNL9BMp+Si0CU0JIVDQdIE0Cq\nzXxPMxR7flyQpo8CiUVsE0CqzbwlSF7LJA6SU1o9WXP6eJCkAFJd5g1B8lvmp4P0eslJdi9n\nst2+0uYMAKnMRq0Z6styLkhuw/yuiL5BWv7GIqjskV6zPfObzC7YBmkCSFWZA6RJvbMeKWgG\nkvcIBZldYEBiKSeAVJX5fpA46xqkoLj2IwWsJUguRzR2AUCqSvuUCNSed5re7DfMfkFan2pb\nQWLsKEj6cSQBE7lVhLgzO8gV62BmStdiZoPHzFKcEa0HPS3IkS4uk3+5mjjkaQdI+s+qXdhn\nDbuP5+4pEnqkpOHUHmna7pH03BNKEbDo7lY9kj4BXGdBNemRvK3a4gOk0kT6Aonp9xsgWVPZ\nSEVQBBJnLUB6xTZri383SGEt1mYGkGKGsUEyJ4DrxYZIBPUgkR7asaQTQKrKvBVIPkcTjx7P\na3O/DaSpLUg0Fz8pAcm6zUQwgiobrTooBUke1MWnlCJIgPTNPTN9aEuQ6K4iBJAK0z63GW6B\nRPTydxIkJwTeAqSoaot/H0juLgBI2YwAkhBAioNkX4sgGEGVjVQdJEAKOeoPJO68/3iQxNAc\nIBVmDpCEnLnek3wDkJhloxhBlY1UHcRBYpEIRgApckt5LJBY2mkBydlXFCOospGqg1FBmvlV\nIBEST8+0WyZNZT+GDok525Fl0Yw41bl2cbNXXLk0V+j8ST0Sc2wUI6iyUaoDe9eaHil6kB+i\nR9IffyJIzLVRjKDKRqkO5QdacQAADAxJREFUoiCxaAQACSCVlgYgBUYjgEQdJO+iXTi0c20E\nI6izUaqDGEjMdxLqGyRlVFsACSBlMzoOkj8CUCIKUrz7/FCQWMZJTje0PqYXQZ2NUh2EILFE\nwvEfjqzNvWuQ7OW4KO0CZQBIpWlfABJLJQyQ9ORva5vELlAGgFSadvMInFGcmEOSShggAaTi\n0gAkFnFSH386SC/7FSDlDAAJIGVAUqdIGiRiy3HlpwBRnZnSu8I1rJY5JLlv0KyHVJGj7ebQ\nclwKIPRIm6X5pB6JBQ5iMlYq4fgS9LW599wjKZoA0mZpPh2k1Prr8nPzKYkIhACSNnCWcwJI\nVZkDJOnDQ45aXGwASADJNQCkPSC5FxuI7AJlAEilaQOk0HAdSHpGA9mZDQCpMO2zQeK+k6OP\nBymu2uIDpNJEAFLacDNIOgaABJDyGQEk6QOQAFLScDJIUx4kahEIpUCKXP0GSACpOHOApHyu\nAomO8msEYYrQOQr3ep97Otl6osGExnF6JL9D8p04eqSKzEsLHLnSjR4JIBVlBpAsA0ACSOQi\n2E7GsZGoA4D0eSB5NnoRbCfj2EjUAUACSOQi2E7GsZGoA4AEkMhFsJ2MYyNRBwCpHiR7rh3B\nSasAqTjtk0HivlMqJRIRSF0Hkp71/XLMtcUHSKWJiKjSfiTqIDbRGyABpJLMrgXJr0dizXB8\nkKLGw+dIL58jArtAGgYGyYaJ2JRPgLQfJH2KRGsVofzSNVQXr9nSMt+Gc8dASrGdTqyIZar7\nEbqjU4QoPyEb/O7vCD0SXy+CoUei1iPprQMguRsEdoE0jAqSczmZ3PKKAGkPSK/IVm3xAVJp\nImYsboNE7EdRANIOkF7mL0DKGQBSOmGAZC+iT3HxE4BUnDZACg3XgfQi/vtIA4NkNU2AVFi8\nyl2e+HnBc4Z2UdUWHyCVJgKQ0gaABJCKE4mBxKNrqtWmDZACA0DShi2QfBu9CMJkVJMESNXF\nA0gAydgAUsIwIEhkVDfHow/JmSiM2wZSM3BGmSJ0uPUM0yMFc1bH6ZHYpJel51NswmRt2u0i\nYDEH9EgAqSSzC0Fa/7L1N9REeACptHgACSC5tiUurl+Z+c0UCnUAkAASuQhCLbY1rLVprr96\nTKwZAqThQAo4GgMkNaKb1CutZgiQABK5CELpqLj5R6sZAiSARC6CULMOisv/qDXDKEjZhKev\nry/9KYEIpO4Aieak1UKQvswmtQhsyZMi6/0IIH0tIhaB1A0gEX0eKQHSlyfrY2oRWOL+hQWz\nBgqtZrgNUrjzaUUgBZCUQVVpEhz/i+QiMOLMh8Y8YU6rGW6BFFTARC0CKYCkDCzscoKEewGJ\nyd7H707dCCk0QyZLFC/p11e+DihEIMVSEZTWwRGQzl6Oqy62EwtSJbdUbI/CkA5MX6vbizVa\niiqzOLjPztRWBFJHsxmmRwrVb49UZptpRbAxCIrZOojg84Z2oQBSygCQyhJN2AASQCrOHCCl\nbeeAtKXNk6iCs6xtl9JTtT2ndIigVRqVjo1zPzcCgHT8O4igMI1Kx8a5UwPJm9mwJ9M6h49o\nhv1HAJDOFZphmUv3EQCkc4VmWObSfQQACYKgowJIENRAAAmCGgggQVADASQIaiCABEENdD9I\nFTd3T07k1swRwf2ZH0nkbJA2y1YyS6JJIkUJnZU5IihP6KTMCzyORHA6SBuFKyp8k0SqHFtn\njgjqHRtnvulzLILzQcoWr6zwTRIpSOi8zBFBaUKnZb6V78EIzh/aZQu4fPjanAXbJJGChM7L\nHBGUJnRa5lv5HozgZJBE6XIOs/yB57MTKUrorMwRQXlCJ2W+ne+xCM4GSeWcdJAf5ndTg0SK\nEjorc0RQntBJmW/neyyC80CyOsl4+V/2Z4nSN0mkKKGzMkcE5QmdlPl2vg0iOA2kl51ttPzC\n+NLuZyVSltBJmSOCioTOybwg3wYRnAXSy+0A47vAlDwb37FEChM6J3NEUJPQKZmX5NsggtNA\nsvNOuaiSpS6VNEmkMKFzMkcENQmdknlJvg0iOLdHyvaTWfrbJVKW0EmZI4KKhM7JvCDfFhGc\nd470cjKPOOQ/bpdIUUJnZY4IyhM6KfPtfFtEcOJVO+cl6bVRiy0SKU/ohMwRQWVC7TMvzPdY\nBGde/k5mGnE7M5GKhNpnjghqE2qeeWm+hyI48Ybsq2zouTWwaJBIRULtM0cEtQk1z7w03yMR\nnDqzoW4pyeDLG4mUpr2ZUPa7iCCXCPUItvNtFcH9D/al1OAIWOfXXIig2q+1WvRCZX5tQVpz\nyx1BNh2045ZL6WGq8nCGCCoyph5BC49Sv8Ygvcy/fQ6O5zGHSj/jjQhKM6YeQYMQS/0aD+2+\n83tl8910sD0POlT6aW9EUJwx9QiuI6n1OdLmXPSiOfurT6bomw7Gr+jQW1VARFDmYPxuiWC7\nfE0jaH6xYTPCkl0w50PcdFB+c+kgpqqAiKDEQfnN90SwXb62EbS/aifyy9dR1kEUOhPipoN2\nNN5Zv8oCIgL6EWyXr3EErS82SMzTpc866J2TesB+08HNy3ynVIig+wi2y3dGBE1BkrHl735l\nHPQB4jWbCKocgtzmukpEBN1HsF2+UyJoBJLu/vSIstZBeL1cv3oHk5nOpqwSEUFpAalHsF2+\nMyJoA5LJ6xXPctNBus3qYJHaBVsOIjPdH7/SDQYRDBrBdvnOiKAJSCbDBOObDtpRljrdrW85\nCCdz0KmpQ0QwRATb5TshghYg6VxSneCmg/FU/Kd3wYaDzqbm/gUiqCkg9Qi2y3dCBA1AUgcK\nWbAw000H4zMnS73p4DjP8nhTtqwnIhgjgu3ynRfBcZBMgHO8s9x0sO2vObWPNhz8LF/KsWCH\nIYIhItgu34kRtOqRcvlsOsyy0MovcbjMO3jeBQfB8gIigjIHz/vqCLbLd14Ejc6RtgMsSGQt\neNJx08F3rhAi0Hl2HcF2+U6LoOVVuwMOyid3fWTToTLDKn9EUOZQmWGVf0GC2+U7K4KW95GO\nOGifrX1QGF1lJSIC26fjCLbLd1IErWY2tKvFg4nUuzbMHBHsdG2X+bbLORG0mmtHrxaLPVtm\njggc12LPhpm3JanYs9mkVXK1WC1E0C6RvSJHUrHoriIEQR0JIEFQAwEkCGoggARBDQSQIKiB\nABIENRBAgqAGAkgQ1EAACYIaCCBBUAMBJAhqIIAEQQ0EkCCogQASBDUQQIKgBgJIENRAAAmC\nGgggQVADASQIaiCABEENBJAgqIEAEgQ1EECCoAYCSBDUQAAJghoIIEFQAwEkCGoggARBDQSQ\nIKiBABIENRBAgqAGAkgQ1EAACYIaCCBBUAMBJAhqIIAEQQ0EkCCogQASBDUQQIKgBgJIENRA\nAAmCGgggQVADASQIaiCABEENBJAgqIEAEgQ1EECCoAYCSBDUQAAJghoIIEFQAwEkCGoggARB\nDQSQIKiBABIENRBAqtf/xXVbOkczPDHHzxFAqhdAggIBpHoBJCgQQKoXQIICAaR6ASQoEECq\nF0CCAgGkegEkKBBAqhdAggIBpHptNsfHIusLj/h+3k6nqDhbXubzbZAelSnu+3xEfWLMR1XW\nHN09C5AG1yfGfFR7miNAGlyfGPNR/d//8VDx5iiGeA89unu46XyFioG0pqK+/jCpqnzEOFLn\nJTJTRgckFioOkvy+n3Ztjp+jT4z5qMqP6w5FEZDKeiTThp0tdRr2eHh5qQ8fjls6w2jJH14y\n+3L8HH1izEdVN0CyG91jTzrWIV8kYTVg5+P0Sz7D/CHgUI6fo0+M+agqQHo8nKN3I5B0qu7H\nJ4K0N8fP0SfGfFR7mmPrHmne06wP9Ui7cvwcfWLMR1XWHPXB3DTFx550TNv0/p0Bkkn/4Zce\nPVJWnxjzUW0DoG/IPlQXsg8kNaR62GjO1tUy5WWsZjQpgai62GDlFb1qV5vj5+gTYz6qguYY\nVy1IrVUCkltUNI9SYU/VCyBBgbCn6rUTgGDEA5AGEvZUvVoBQBkkqFIAqV4ACQoEkCCogQAS\nBDUQQIKgBgJIENRAAAmCGgggQVADASQIaiCABEENBJAgqIEAEgQ1EECCoAYCSBDUQAAJghoI\nIEFQAwEkCGoggARBDQSQIKiBABIENRBAgqAG+n96rUlGtIQxYwAAAABJRU5ErkJggg==",
"text/plain": [
"plot without title"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"rate.max <- rates.long$count %>% max(na.rm=T)\n",
"\n",
"df <- rates.long %>% filter(country %in% setdiff(top.countries, 'World')) %>%\n",
" mutate(country=factor(country, levels=top.countries))\n",
"\n",
"df %>% ggplot(aes(x=date, y=count, color=type)) +\n",
" geom_line() +\n",
" xlab('') + ylab('Death Rate (%)') +\n",
" theme(legend.position='bottom', legend.title=element_blank(),\n",
" legend.text=element_text(size=8),\n",
" legend.key.size=unit(0.5, 'cm'),\n",
" axis.text.x=element_text(angle=45, hjust=1)) +\n",
"ylim(c(0, 100)) +\n",
"facet_wrap(~country, ncol=4)\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\\begin{table}[!h]\n",
"\n",
"\\caption{\\label{tab:}Top 20 Countries with Highest Death Rates - 02 Apr 2020}\n",
"\\centering\n",
"\\fontsize{7}{9}\\selectfont\n",
"\\begin{tabular}[t]{llrrrrrrr}\n",
"\\toprule\n",
" & country & confirmed & confirmed.new & remaining.confirmed & recovered & deaths & deaths.new & death.rate\\\\\n",
"\\midrule\n",
"\\rowcolor{gray!6} 1 & San Marino & 245 & 9 & 194 & 21 & 30 & 4 & 12.2\\%\\\\\n",
"2 & Italy & 115,242 & 4,668 & 83,049 & 18,278 & 13,915 & 760 & 12.1\\%\\\\\n",
"\\rowcolor{gray!6} 3 & Congo (Kinshasa) & 134 & 25 & 118 & 3 & 13 & 4 & 9.7\\%\\\\\n",
"4 & Indonesia & 1,790 & 113 & 1,508 & 112 & 170 & 13 & 9.5\\%\\\\\n",
"\\rowcolor{gray!6} 5 & Spain & 112,065 & 7,947 & 74,974 & 26,743 & 10,348 & 961 & 9.2\\%\\\\\n",
"\\addlinespace\n",
"6 & Netherlands & 14,788 & 1,092 & 13,187 & 260 & 1,341 & 166 & 9.1\\%\\\\\n",
"\\rowcolor{gray!6} 7 & France & 59,929 & 2,180 & 41,983 & 12,548 & 5,398 & 1,355 & 9.0\\%\\\\\n",
"8 & Algeria & 986 & 139 & 839 & 61 & 86 & 28 & 8.7\\%\\\\\n",
"\\rowcolor{gray!6} 9 & United Kingdom & 34,173 & 4,308 & 31,055 & 192 & 2,926 & 569 & 8.6\\%\\\\\n",
"10 & Iraq & 772 & 44 & 516 & 202 & 54 & 2 & 7.0\\%\\\\\n",
"\\addlinespace\n",
"\\rowcolor{gray!6} 11 & Egypt & 865 & 86 & 606 & 201 & 58 & 6 & 6.7\\%\\\\\n",
"12 & Belgium & 15,348 & 1,384 & 11,842 & 2,495 & 1,011 & 183 & 6.6\\%\\\\\n",
"\\rowcolor{gray!6} 13 & Bolivia & 123 & 8 & 114 & 1 & 8 & 1 & 6.5\\%\\\\\n",
"14 & Honduras & 219 & 47 & 202 & 3 & 14 & 4 & 6.4\\%\\\\\n",
"\\rowcolor{gray!6} 15 & Iran & 50,468 & 2,875 & 30,597 & 16,711 & 3,160 & 124 & 6.3\\%\\\\\n",
"\\addlinespace\n",
"16 & Morocco & 708 & 54 & 633 & 31 & 44 & 5 & 6.2\\%\\\\\n",
"\\rowcolor{gray!6} 17 & Albania & 277 & 18 & 185 & 76 & 16 & 1 & 5.8\\%\\\\\n",
"18 & Burkina Faso & 288 & 6 & 222 & 50 & 16 & 0 & 5.6\\%\\\\\n",
"\\rowcolor{gray!6} 19 & Sweden & 5,568 & 621 & 5,157 & 103 & 308 & 69 & 5.5\\%\\\\\n",
"20 & Dominican Republic & 1,380 & 96 & 1,304 & 16 & 60 & 3 & 4.3\\%\\\\\n",
"\\bottomrule\n",
"\\end{tabular}\n",
"\\end{table}"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Latest Cases by Country - TOP confirmed cases\n",
"## sort the latest data by death rate, and if tie, by confirmed\n",
"df <- data %>% filter(date == max(date) & country != 'World' & confirmed >= 100) %>% \n",
" select(country, confirmed, confirmed.new, remaining.confirmed,\n",
" recovered, deaths, deaths.new, death.rate=rate.lower) %>%\n",
" arrange(desc(death.rate, confirmed))\n",
"\n",
"df %>% head(20) %>%\n",
"mutate(death.rate=death.rate %>% format(nsmall=1) %>% paste0('%')) %>%\n",
" kable('latex', booktabs=T, row.names=T, align=c('l', rep('r', 7)),\n",
" caption=paste0('Top 20 Countries with Highest Death Rates - ', max.date.txt), format.args=list(big.mark=',')) %>%\n",
"kable_styling(font_size=7, latex_options=c('striped', 'hold_position', 'repeat_header'))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that this is an developing story. Check back for updates."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}